Publikation: Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Multivariate Analysis. 2016, 147, pp. 218-233. ISSN 0047-259X. eISSN 1095-7243. Available under: doi: 10.1016/j.jmva.2016.02.002
Zusammenfassung
Observations in functional data analysis (FDA) are often perturbed by random noise. In this paper we consider estimation of eigenvalues, eigenfunctions and scores for FDA models with weakly or strongly dependent error processes. As it turns out, the asymptotic distribution of estimated eigenvalues and eigenfunctions does not depend on the strength of dependence in the error process. In contrast, the rate of convergence and the asymptotic distribution of estimated scores differ distinctly between the cases of short and long memory. Simulations illustrate the asymptotic results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, Haiyan LIU, 2016. Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors. In: Journal of Multivariate Analysis. 2016, 147, pp. 218-233. ISSN 0047-259X. eISSN 1095-7243. Available under: doi: 10.1016/j.jmva.2016.02.002BibTex
@article{Beran2016-05Estim-34159, year={2016}, doi={10.1016/j.jmva.2016.02.002}, title={Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors}, volume={147}, issn={0047-259X}, journal={Journal of Multivariate Analysis}, pages={218--233}, author={Beran, Jan and Liu, Haiyan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34159"> <dcterms:title>Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34159"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-30T12:39:43Z</dc:date> <dc:contributor>Liu, Haiyan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Observations in functional data analysis (FDA) are often perturbed by random noise. In this paper we consider estimation of eigenvalues, eigenfunctions and scores for FDA models with weakly or strongly dependent error processes. As it turns out, the asymptotic distribution of estimated eigenvalues and eigenfunctions does not depend on the strength of dependence in the error process. In contrast, the rate of convergence and the asymptotic distribution of estimated scores differ distinctly between the cases of short and long memory. Simulations illustrate the asymptotic results.</dcterms:abstract> <dc:contributor>Beran, Jan</dc:contributor> <dc:creator>Beran, Jan</dc:creator> <dcterms:issued>2016-05</dcterms:issued> <dc:creator>Liu, Haiyan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-30T12:39:43Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja