Publikation:

A Domain-adaptive Pre-training Approach for Language Bias Detection in News

Lade...
Vorschaubild

Dateien

Krieger_2-1fua1es2xhhxv0.pdf
Krieger_2-1fua1es2xhhxv0.pdfGröße: 621.92 KBDownloads: 101

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries. New York, NY: ACM, 2022, 3. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530932

Zusammenfassung

Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Media bias, news slant, neural classification, text analysis, domain adaptive

Konferenz

ACM/IEEE Joint Conference on Digital Libraries (JCDL ’22), 20. Juni 2022 - 24. Juni 2022, Köln
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRIEGER, Jan-David, Timo SPINDE, Terry RUAS, Juhi KULSHRESTHA, Bela GIPP, 2022. A Domain-adaptive Pre-training Approach for Language Bias Detection in News. ACM/IEEE Joint Conference on Digital Libraries (JCDL ’22). Köln, 20. Juni 2022 - 24. Juni 2022. In: JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries. New York, NY: ACM, 2022, 3. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530932
BibTex
@inproceedings{Krieger2022Domai-57523,
  year={2022},
  doi={10.1145/3529372.3530932},
  title={A Domain-adaptive Pre-training Approach for Language Bias Detection in News},
  isbn={978-1-4503-9345-4},
  publisher={ACM},
  address={New York, NY},
  booktitle={JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries},
  author={Krieger, Jan-David and Spinde, Timo and Ruas, Terry and Kulshrestha, Juhi and Gipp, Bela},
  note={Article Number: 3}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57523">
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Ruas, Terry</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>A Domain-adaptive Pre-training Approach for Language Bias Detection in News</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Krieger, Jan-David</dc:contributor>
    <dc:creator>Spinde, Timo</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57523"/>
    <dc:creator>Krieger, Jan-David</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dc:date>
    <dc:creator>Kulshrestha, Juhi</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dcterms:abstract xml:lang="eng">Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Kulshrestha, Juhi</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/>
    <dc:contributor>Ruas, Terry</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen