Publikation: A Domain-adaptive Pre-training Approach for Language Bias Detection in News
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRIEGER, Jan-David, Timo SPINDE, Terry RUAS, Juhi KULSHRESTHA, Bela GIPP, 2022. A Domain-adaptive Pre-training Approach for Language Bias Detection in News. ACM/IEEE Joint Conference on Digital Libraries (JCDL ’22). Köln, 20. Juni 2022 - 24. Juni 2022. In: JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries. New York, NY: ACM, 2022, 3. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530932BibTex
@inproceedings{Krieger2022Domai-57523, year={2022}, doi={10.1145/3529372.3530932}, title={A Domain-adaptive Pre-training Approach for Language Bias Detection in News}, isbn={978-1-4503-9345-4}, publisher={ACM}, address={New York, NY}, booktitle={JCDL '22 : Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries}, author={Krieger, Jan-David and Spinde, Timo and Ruas, Terry and Kulshrestha, Juhi and Gipp, Bela}, note={Article Number: 3} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57523"> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/> <dcterms:issued>2022</dcterms:issued> <dc:creator>Ruas, Terry</dc:creator> <dc:language>eng</dc:language> <dcterms:title>A Domain-adaptive Pre-training Approach for Language Bias Detection in News</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Krieger, Jan-David</dc:contributor> <dc:creator>Spinde, Timo</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57523"/> <dc:creator>Krieger, Jan-David</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dc:date> <dc:creator>Kulshrestha, Juhi</dc:creator> <dc:creator>Gipp, Bela</dc:creator> <dc:contributor>Spinde, Timo</dc:contributor> <dcterms:abstract xml:lang="eng">Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Kulshrestha, Juhi</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57523/1/Krieger_2-1fua1es2xhhxv0.pdf"/> <dc:contributor>Ruas, Terry</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-12T11:55:32Z</dcterms:available> </rdf:Description> </rdf:RDF>