Publikation:

DeepNC : Deep Generative Network Completion

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Tran, Công
Shin, Won-Yong
Gertz, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 2022, 44(4), pp. 1837-1852. ISSN 0162-8828. eISSN 1939-3539. Available under: doi: 10.1109/TPAMI.2020.3032286

Zusammenfassung

Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missing parts of the networks by performing network completion should precede downstream applications. However, despite this need, the recovery of missing nodes and edges in such incomplete networks is an insufficiently explored problem due to the modeling difficulty, which is much more challenging than link prediction that only infers missing edges. In this paper, we present DeepNC, a novel method for inferring the missing parts of a network based on a deep generative model of graphs. Specifically, our method first learns a likelihood over edges via an autoregressive generative model, and then identifies the graph that maximizes the learned likelihood conditioned on the observable graph topology. Moreover, we propose a computationally efficient DeepNC algorithm that consecutively finds individual nodes that maximize the probability in each node generation step, as well as an enhanced version using the expectation-maximization algorithm. The runtime complexities of both algorithms are shown to be almost linear in the number of nodes in the network. We empirically demonstrate the superiority of DeepNC over state-of-the-art network completion approaches.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TRAN, Công, Won-Yong SHIN, Andreas SPITZ, Michael GERTZ, 2022. DeepNC : Deep Generative Network Completion. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 2022, 44(4), pp. 1837-1852. ISSN 0162-8828. eISSN 1939-3539. Available under: doi: 10.1109/TPAMI.2020.3032286
BibTex
@article{Tran2022DeepN-54793,
  year={2022},
  doi={10.1109/TPAMI.2020.3032286},
  title={DeepNC : Deep Generative Network Completion},
  number={4},
  volume={44},
  issn={0162-8828},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  pages={1837--1852},
  author={Tran, Công and Shin, Won-Yong and Spitz, Andreas and Gertz, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54793">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-02T13:58:37Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:issued>2022</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missing parts of the networks by performing network completion should precede downstream applications. However, despite this need, the recovery of missing nodes and edges in such incomplete networks is an insufficiently explored problem due to the modeling difficulty, which is much more challenging than link prediction that only infers missing edges. In this paper, we present DeepNC, a novel method for inferring the missing parts of a network based on a deep generative model of graphs. Specifically, our method first learns a likelihood over edges via an autoregressive generative model, and then identifies the graph that maximizes the learned likelihood conditioned on the observable graph topology. Moreover, we propose a computationally efficient DeepNC algorithm that consecutively finds individual nodes that maximize the probability in each node generation step, as well as an enhanced version using the expectation-maximization algorithm. The runtime complexities of both algorithms are shown to be almost linear in the number of nodes in the network. We empirically demonstrate the superiority of DeepNC over state-of-the-art network completion approaches.</dcterms:abstract>
    <dc:contributor>Shin, Won-Yong</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54793"/>
    <dc:contributor>Tran, Công</dc:contributor>
    <dc:creator>Gertz, Michael</dc:creator>
    <dc:creator>Tran, Công</dc:creator>
    <dc:creator>Spitz, Andreas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Shin, Won-Yong</dc:creator>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dcterms:title>DeepNC : Deep Generative Network Completion</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-02T13:58:37Z</dc:date>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen