Publikation: DeepNC : Deep Generative Network Completion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missing parts of the networks by performing network completion should precede downstream applications. However, despite this need, the recovery of missing nodes and edges in such incomplete networks is an insufficiently explored problem due to the modeling difficulty, which is much more challenging than link prediction that only infers missing edges. In this paper, we present DeepNC, a novel method for inferring the missing parts of a network based on a deep generative model of graphs. Specifically, our method first learns a likelihood over edges via an autoregressive generative model, and then identifies the graph that maximizes the learned likelihood conditioned on the observable graph topology. Moreover, we propose a computationally efficient DeepNC algorithm that consecutively finds individual nodes that maximize the probability in each node generation step, as well as an enhanced version using the expectation-maximization algorithm. The runtime complexities of both algorithms are shown to be almost linear in the number of nodes in the network. We empirically demonstrate the superiority of DeepNC over state-of-the-art network completion approaches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TRAN, Công, Won-Yong SHIN, Andreas SPITZ, Michael GERTZ, 2022. DeepNC : Deep Generative Network Completion. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 2022, 44(4), pp. 1837-1852. ISSN 0162-8828. eISSN 1939-3539. Available under: doi: 10.1109/TPAMI.2020.3032286BibTex
@article{Tran2022DeepN-54793, year={2022}, doi={10.1109/TPAMI.2020.3032286}, title={DeepNC : Deep Generative Network Completion}, number={4}, volume={44}, issn={0162-8828}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, pages={1837--1852}, author={Tran, Công and Shin, Won-Yong and Spitz, Andreas and Gertz, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54793"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-02T13:58:37Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2022</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missing parts of the networks by performing network completion should precede downstream applications. However, despite this need, the recovery of missing nodes and edges in such incomplete networks is an insufficiently explored problem due to the modeling difficulty, which is much more challenging than link prediction that only infers missing edges. In this paper, we present DeepNC, a novel method for inferring the missing parts of a network based on a deep generative model of graphs. Specifically, our method first learns a likelihood over edges via an autoregressive generative model, and then identifies the graph that maximizes the learned likelihood conditioned on the observable graph topology. Moreover, we propose a computationally efficient DeepNC algorithm that consecutively finds individual nodes that maximize the probability in each node generation step, as well as an enhanced version using the expectation-maximization algorithm. The runtime complexities of both algorithms are shown to be almost linear in the number of nodes in the network. We empirically demonstrate the superiority of DeepNC over state-of-the-art network completion approaches.</dcterms:abstract> <dc:contributor>Shin, Won-Yong</dc:contributor> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54793"/> <dc:contributor>Tran, Công</dc:contributor> <dc:creator>Gertz, Michael</dc:creator> <dc:creator>Tran, Công</dc:creator> <dc:creator>Spitz, Andreas</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Shin, Won-Yong</dc:creator> <dc:contributor>Gertz, Michael</dc:contributor> <dcterms:title>DeepNC : Deep Generative Network Completion</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-02T13:58:37Z</dc:date> <dc:contributor>Spitz, Andreas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>