Publikation:

Feature-based automatic identification of interesting data segments in group movement data

Lade...
Vorschaubild

Dateien

Landesberger_245242.pdf
Landesberger_245242.pdfGröße: 7.01 MBDownloads: 951

Datum

2013

Autor:innen

Landesberger, Tatiana von
Bremm, Sebastian
Fellner, Dieter W.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Visualization. 2013, 13(3), pp. 190-212. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613477851

Zusammenfassung

The study of movement data is an important task in a variety of domains such as transportation, biology, or finance. Often, the data objects are grouped (e.g. countries by continents). We distinguish three main categories of movement data analysis, based on the focus of the analysis: (a) movement characteristics of an individual in the context of its group, (b) the dynamics of a given group, and (c) the comparison of the behavior of multiple groups. Examination of group movement data can be effectively supported by data analysis and visualization. In this respect, approaches based on analysis of derived movement characteristics (called features in this article) can be useful. However, current approaches are limited as they do not cover a broad range of situations and typically require manual feature monitoring. We present an enhanced set of movement analysis features and add automatic analysis of the features for filtering the interesting parts in large movement data sets. Using this approach, users can easily detect new interesting characteristics such as outliers, trends, and task-dependent data patterns even in large sets of data points over long time horizons. We demonstrate the usefulness with two real-world data sets from the socioeconomic and the financial domains.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LANDESBERGER, Tatiana von, Sebastian BREMM, Tobias SCHRECK, Dieter W. FELLNER, 2013. Feature-based automatic identification of interesting data segments in group movement data. In: Information Visualization. 2013, 13(3), pp. 190-212. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613477851
BibTex
@article{Landesberger2013Featu-24524,
  year={2013},
  doi={10.1177/1473871613477851},
  title={Feature-based automatic identification of interesting data segments in group movement data},
  number={3},
  volume={13},
  issn={1473-8716},
  journal={Information Visualization},
  pages={190--212},
  author={Landesberger, Tatiana von and Bremm, Sebastian and Schreck, Tobias and Fellner, Dieter W.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24524">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24524"/>
    <dcterms:title>Feature-based automatic identification of interesting data segments in group movement data</dcterms:title>
    <dc:creator>Landesberger, Tatiana von</dc:creator>
    <dcterms:issued>2013</dcterms:issued>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bremm, Sebastian</dc:creator>
    <dc:contributor>Bremm, Sebastian</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Information Visualization ; 13 (2014), 3. - S. 190-212</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Landesberger, Tatiana von</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-23T13:20:20Z</dc:date>
    <dcterms:abstract xml:lang="eng">The study of movement data is an important task in a variety of domains such as transportation, biology, or finance. Often, the data objects are grouped (e.g. countries by continents). We distinguish three main categories of movement data analysis, based on the focus of the analysis: (a) movement characteristics of an individual in the context of its group, (b) the dynamics of a given group, and (c) the comparison of the behavior of multiple groups. Examination of group movement data can be effectively supported by data analysis and visualization. In this respect, approaches based on analysis of derived movement characteristics (called features in this article) can be useful. However, current approaches are limited as they do not cover a broad range of situations and typically require manual feature monitoring. We present an enhanced set of movement analysis features and add automatic analysis of the features for filtering the interesting parts in large movement data sets. Using this approach, users can easily detect new interesting characteristics such as outliers, trends, and task-dependent data patterns even in large sets of data points over long time horizons. We demonstrate the usefulness with two real-world data sets from the socioeconomic and the financial domains.</dcterms:abstract>
    <dc:contributor>Fellner, Dieter W.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-23T13:20:20Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24524/2/Landesberger_245242.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24524/2/Landesberger_245242.pdf"/>
    <dc:language>eng</dc:language>
    <dc:creator>Fellner, Dieter W.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen