Publikation: Feature-based automatic identification of interesting data segments in group movement data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The study of movement data is an important task in a variety of domains such as transportation, biology, or finance. Often, the data objects are grouped (e.g. countries by continents). We distinguish three main categories of movement data analysis, based on the focus of the analysis: (a) movement characteristics of an individual in the context of its group, (b) the dynamics of a given group, and (c) the comparison of the behavior of multiple groups. Examination of group movement data can be effectively supported by data analysis and visualization. In this respect, approaches based on analysis of derived movement characteristics (called features in this article) can be useful. However, current approaches are limited as they do not cover a broad range of situations and typically require manual feature monitoring. We present an enhanced set of movement analysis features and add automatic analysis of the features for filtering the interesting parts in large movement data sets. Using this approach, users can easily detect new interesting characteristics such as outliers, trends, and task-dependent data patterns even in large sets of data points over long time horizons. We demonstrate the usefulness with two real-world data sets from the socioeconomic and the financial domains.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LANDESBERGER, Tatiana von, Sebastian BREMM, Tobias SCHRECK, Dieter W. FELLNER, 2013. Feature-based automatic identification of interesting data segments in group movement data. In: Information Visualization. 2013, 13(3), pp. 190-212. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613477851BibTex
@article{Landesberger2013Featu-24524, year={2013}, doi={10.1177/1473871613477851}, title={Feature-based automatic identification of interesting data segments in group movement data}, number={3}, volume={13}, issn={1473-8716}, journal={Information Visualization}, pages={190--212}, author={Landesberger, Tatiana von and Bremm, Sebastian and Schreck, Tobias and Fellner, Dieter W.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24524"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24524"/> <dcterms:title>Feature-based automatic identification of interesting data segments in group movement data</dcterms:title> <dc:creator>Landesberger, Tatiana von</dc:creator> <dcterms:issued>2013</dcterms:issued> <dc:creator>Schreck, Tobias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Bremm, Sebastian</dc:creator> <dc:contributor>Bremm, Sebastian</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Information Visualization ; 13 (2014), 3. - S. 190-212</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Landesberger, Tatiana von</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-23T13:20:20Z</dc:date> <dcterms:abstract xml:lang="eng">The study of movement data is an important task in a variety of domains such as transportation, biology, or finance. Often, the data objects are grouped (e.g. countries by continents). We distinguish three main categories of movement data analysis, based on the focus of the analysis: (a) movement characteristics of an individual in the context of its group, (b) the dynamics of a given group, and (c) the comparison of the behavior of multiple groups. Examination of group movement data can be effectively supported by data analysis and visualization. In this respect, approaches based on analysis of derived movement characteristics (called features in this article) can be useful. However, current approaches are limited as they do not cover a broad range of situations and typically require manual feature monitoring. We present an enhanced set of movement analysis features and add automatic analysis of the features for filtering the interesting parts in large movement data sets. Using this approach, users can easily detect new interesting characteristics such as outliers, trends, and task-dependent data patterns even in large sets of data points over long time horizons. We demonstrate the usefulness with two real-world data sets from the socioeconomic and the financial domains.</dcterms:abstract> <dc:contributor>Fellner, Dieter W.</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-23T13:20:20Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24524/2/Landesberger_245242.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24524/2/Landesberger_245242.pdf"/> <dc:language>eng</dc:language> <dc:creator>Fellner, Dieter W.</dc:creator> </rdf:Description> </rdf:RDF>