Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PETERSEN, Felix, Christian BORGELT, Hilde KUEHNE, Oliver DEUSSEN, 2021. Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision. 38th International Conference on Machine Learning (virtual), 18. Juli 2021 - 24. Juli 2021. In: MEILA, Marina, ed., Tong ZHANG, ed.. Proceedings of the 38th International Conference on Machine Learning. Maastricht: ML Research Press, 2021, pp. 8546-8555. Proceedings of Machine Learning Research. 139. eISSN 2640-3498BibTex
@inproceedings{Petersen2021Diffe-57905, year={2021}, title={Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision}, url={http://proceedings.mlr.press/v139/petersen21a.html}, number={139}, publisher={ML Research Press}, address={Maastricht}, series={Proceedings of Machine Learning Research}, booktitle={Proceedings of the 38th International Conference on Machine Learning}, pages={8546--8555}, editor={Meila, Marina and Zhang, Tong}, author={Petersen, Felix and Borgelt, Christian and Kuehne, Hilde and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57905"> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Borgelt, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-30T13:12:46Z</dcterms:available> <dc:contributor>Petersen, Felix</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57905"/> <dc:contributor>Kuehne, Hilde</dc:contributor> <dc:creator>Borgelt, Christian</dc:creator> <dc:creator>Petersen, Felix</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-30T13:12:46Z</dc:date> <dcterms:issued>2021</dcterms:issued> <dc:creator>Kuehne, Hilde</dc:creator> <dcterms:abstract xml:lang="eng">Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.</dcterms:abstract> <dcterms:title>Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision</dcterms:title> <dc:creator>Deussen, Oliver</dc:creator> </rdf:Description> </rdf:RDF>