Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MEILA, Marina, ed., Tong ZHANG, ed.. Proceedings of the 38th International Conference on Machine Learning. Maastricht: ML Research Press, 2021, pp. 8546-8555. Proceedings of Machine Learning Research. 139. eISSN 2640-3498
Zusammenfassung

Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
38th International Conference on Machine Learning (virtual), 18. Juli 2021 - 24. Juli 2021
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PETERSEN, Felix, Christian BORGELT, Hilde KUEHNE, Oliver DEUSSEN, 2021. Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision. 38th International Conference on Machine Learning (virtual), 18. Juli 2021 - 24. Juli 2021. In: MEILA, Marina, ed., Tong ZHANG, ed.. Proceedings of the 38th International Conference on Machine Learning. Maastricht: ML Research Press, 2021, pp. 8546-8555. Proceedings of Machine Learning Research. 139. eISSN 2640-3498
BibTex
@inproceedings{Petersen2021Diffe-57905,
  year={2021},
  title={Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision},
  url={http://proceedings.mlr.press/v139/petersen21a.html},
  number={139},
  publisher={ML Research Press},
  address={Maastricht},
  series={Proceedings of Machine Learning Research},
  booktitle={Proceedings of the 38th International Conference on Machine Learning},
  pages={8546--8555},
  editor={Meila, Marina and Zhang, Tong},
  author={Petersen, Felix and Borgelt, Christian and Kuehne, Hilde and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57905">
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-30T13:12:46Z</dcterms:available>
    <dc:contributor>Petersen, Felix</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57905"/>
    <dc:contributor>Kuehne, Hilde</dc:contributor>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dc:creator>Petersen, Felix</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-30T13:12:46Z</dc:date>
    <dcterms:issued>2021</dcterms:issued>
    <dc:creator>Kuehne, Hilde</dc:creator>
    <dcterms:abstract xml:lang="eng">Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.</dcterms:abstract>
    <dcterms:title>Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision</dcterms:title>
    <dc:creator>Deussen, Oliver</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2022-05-23
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen