Publikation:

Machine Learning Driven Analysis of Large Scale Simulations Reveals Conformational Characteristics of Ubiquitin Chains

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 2020, 16(5), pp. 3205-3220. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.0c00045

Zusammenfassung

Understanding the conformational characteristics of protein complexes in solution is crucial for a deeper insight in their biological function. Molecular dynamics simulations performed on high performance computing plants and with modern simulation techniques can be used to obtain large data sets that contain conformational and thermodynamic information about biomolecular systems. While this can in principle give a detailed picture of protein-protein interactions in solution and therefore complement experimental data, it also raises the challenge of processing exceedingly large high-dimensional data sets with several million samples. Here we present a novel method for the characterization of protein-protein interactions, which combines a neural network based dimensionality reduction technique to obtain a two-dimensional representation of the conformational space with a density based clustering algorithm for state detection and a metric which assesses the (dis)similarity between different conformational spaces. This method is highly scalable and therefore makes the analysis of massive data sets computationally tractable. We demonstrate the power of this approach to large scale data analysis by characterizing highly dynamic conformational phase spaces of differently linked ubiquitin (Ub) oligomers from coarse-grained simulations. We are able to extract a protein-protein interaction model for two unlinked Ub proteins which is then used to determine how the Ub-Ub interaction pattern is altered in Ub oligomers by the introduction of a covalent linkage. We find that the Ub chain conformational ensemble depends highly on the linkage type and for some cases also on the Ub chain length. By this, we obtain insight into the conformational characteristics of different Ub chains and how this may contribute to linkage type and chain length specific recognition.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERG, Andrej, Leon FRANKE, Martin SCHEFFNER, Christine PETER, 2020. Machine Learning Driven Analysis of Large Scale Simulations Reveals Conformational Characteristics of Ubiquitin Chains. In: Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 2020, 16(5), pp. 3205-3220. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.0c00045
BibTex
@article{Berg2020-05-12Machi-49174,
  year={2020},
  doi={10.1021/acs.jctc.0c00045},
  title={Machine Learning Driven Analysis of Large Scale Simulations Reveals Conformational Characteristics of Ubiquitin Chains},
  number={5},
  volume={16},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation (JCTC)},
  pages={3205--3220},
  author={Berg, Andrej and Franke, Leon and Scheffner, Martin and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49174">
    <dc:creator>Franke, Leon</dc:creator>
    <dc:contributor>Peter, Christine</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020-05-12</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Berg, Andrej</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49174"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-31T07:48:23Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Scheffner, Martin</dc:creator>
    <dc:creator>Berg, Andrej</dc:creator>
    <dcterms:title>Machine Learning Driven Analysis of Large Scale Simulations Reveals Conformational Characteristics of Ubiquitin Chains</dcterms:title>
    <dc:contributor>Franke, Leon</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:contributor>Scheffner, Martin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-31T07:48:23Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Understanding the conformational characteristics of protein complexes in solution is crucial for a deeper insight in their biological function. Molecular dynamics simulations performed on high performance computing plants and with modern simulation techniques can be used to obtain large data sets that contain conformational and thermodynamic information about biomolecular systems. While this can in principle give a detailed picture of protein-protein interactions in solution and therefore complement experimental data, it also raises the challenge of processing exceedingly large high-dimensional data sets with several million samples. Here we present a novel method for the characterization of protein-protein interactions, which combines a neural network based dimensionality reduction technique to obtain a two-dimensional representation of the conformational space with a density based clustering algorithm for state detection and a metric which assesses the (dis)similarity between different conformational spaces. This method is highly scalable and therefore makes the analysis of massive data sets computationally tractable. We demonstrate the power of this approach to large scale data analysis by characterizing highly dynamic conformational phase spaces of differently linked ubiquitin (Ub) oligomers from coarse-grained simulations. We are able to extract a protein-protein interaction model for two unlinked Ub proteins which is then used to determine how the Ub-Ub interaction pattern is altered in Ub oligomers by the introduction of a covalent linkage. We find that the Ub chain conformational ensemble depends highly on the linkage type and for some cases also on the Ub chain length. By this, we obtain insight into the conformational characteristics of different Ub chains and how this may contribute to linkage type and chain length specific recognition.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen