Publikation: Machine learning for quantum mechanics in a nutshell
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Quantum Chemistry. Wiley-Blackwell. 2015, 115(16), pp. 1058-1073. ISSN 0020-7608. eISSN 1097-461X. Available under: doi: 10.1002/qua.24954
Zusammenfassung
Models that combine quantum mechanics (QM) with machine learning (ML) promise to deliver the accuracy of QM at the speed of ML. This hands‐on tutorial introduces the reader to QM/ML models based on kernel learning, an elegant, systematically nonlinear form of ML. Pseudocode and a reference implementation are provided, enabling the reader to reproduce results from recent publications where atomization energies of small organic molecules are predicted using kernel ridge regression.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
machine learning, quantum chemistry, tutorial, kernel ridge regression, implementation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
RUPP, Matthias, 2015. Machine learning for quantum mechanics in a nutshell. In: International Journal of Quantum Chemistry. Wiley-Blackwell. 2015, 115(16), pp. 1058-1073. ISSN 0020-7608. eISSN 1097-461X. Available under: doi: 10.1002/qua.24954BibTex
@article{Rupp2015Machi-52107, year={2015}, doi={10.1002/qua.24954}, title={Machine learning for quantum mechanics in a nutshell}, number={16}, volume={115}, issn={0020-7608}, journal={International Journal of Quantum Chemistry}, pages={1058--1073}, author={Rupp, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52107"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-14T14:04:52Z</dc:date> <dc:contributor>Rupp, Matthias</dc:contributor> <dcterms:abstract xml:lang="eng">Models that combine quantum mechanics (QM) with machine learning (ML) promise to deliver the accuracy of QM at the speed of ML. This hands‐on tutorial introduces the reader to QM/ML models based on kernel learning, an elegant, systematically nonlinear form of ML. Pseudocode and a reference implementation are provided, enabling the reader to reproduce results from recent publications where atomization energies of small organic molecules are predicted using kernel ridge regression.</dcterms:abstract> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52107"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-14T14:04:52Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015</dcterms:issued> <dcterms:title>Machine learning for quantum mechanics in a nutshell</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rupp, Matthias</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt