Publikation:

Pre-trained artificial intelligence-aided analysis of nanoparticles using the segment anything model

Lade...
Vorschaubild

Dateien

Monteiro_2-1ggsckoemu2jp2.pdf
Monteiro_2-1ggsckoemu2jp2.pdfGröße: 3.26 MBDownloads: 24

Datum

2025

Autor:innen

Alemao Monteiro, Bruno A.
dos Santos, Jefersson A.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): SFB 1214/B4

Projekt

SFB 1214 - TP B4 Structure formation in confined colloidal rod-sphere mixtures
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Partikelanalysezentrum, Nanostrukturlabor

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Scientific Reports. Springer. 2025, 15, 2341. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-025-86327-x

Zusammenfassung

Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles. In the latter field, the most challenging examples are those of subdivided particles and particle-based materials, due to the close proximity of their constituents. The characterization of such nanostructured materials is typically conducted through the utilization of micrographs. Despite the importance of micrograph analysis, the extraction of quantitative data is often constrained. The presented effort demonstrates the morphological characterization of subdivided particles utilizing a pre-trained artificial intelligence model. The results are validated using three types of nanoparticles: nanospheres, dumbbells, and trimers. The automated segmentation of whole particles, as well as their individual subdivisions, is investigated using the Segment Anything Model, which is based on a pre-trained neural network. The subdivisions of the particles are organized into sets, which presents a novel approach in this field. These sets collate data derived from a large ensemble of specific particle domains indicating to which particle each subdomain belongs. The arrangement of subdivisions into sets to characterize complex nanoparticles expands the information gathered from microscopy analysis. The presented method, which employs a pre-trained deep learning model, outperforms traditional techniques by circumventing systemic errors and human bias. It can effectively automate the analysis of particles, thereby providing more accurate and efficient results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Nanopartikel, Bildsegmentierung, Künstliche Intelligenz, Segment Anything Model, Kolloide, Mikroskopie

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zitieren

ISO 690ALEMAO MONTEIRO, Gabriel, Bruno A. ALEMAO MONTEIRO, Jefersson A. DOS SANTOS, Alexander WITTEMANN, 2025. Pre-trained artificial intelligence-aided analysis of nanoparticles using the segment anything model. In: Scientific Reports. Springer. 2025, 15, 2341. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-025-86327-x
BibTex
@article{AlemaoMonteiro2025-01-17Pretr-72098,
  title={Pre-trained artificial intelligence-aided analysis of nanoparticles using the segment anything model},
  year={2025},
  doi={10.1038/s41598-025-86327-x},
  volume={15},
  journal={Scientific Reports},
  author={Alemao Monteiro, Gabriel and Alemao Monteiro, Bruno A. and dos Santos, Jefersson A. and Wittemann, Alexander},
  note={Article Number: 2341}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72098">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Wittemann, Alexander</dc:creator>
    <dc:contributor>Wittemann, Alexander</dc:contributor>
    <dc:creator>Alemao Monteiro, Bruno A.</dc:creator>
    <dc:contributor>Alemao Monteiro, Bruno A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-30T08:18:45Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-30T08:18:45Z</dcterms:available>
    <dc:contributor>Alemao Monteiro, Gabriel</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Alemao Monteiro, Gabriel</dc:creator>
    <dc:contributor>dos Santos, Jefersson A.</dc:contributor>
    <dcterms:issued>2025-01-17</dcterms:issued>
    <dcterms:title>Pre-trained artificial intelligence-aided analysis of nanoparticles using the segment anything model</dcterms:title>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72098"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract>Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles. In the latter field, the most challenging examples are those of subdivided particles and particle-based materials, due to the close proximity of their constituents. The characterization of such nanostructured materials is typically conducted through the utilization of micrographs. Despite the importance of micrograph analysis, the extraction of quantitative data is often constrained. The presented effort demonstrates the morphological characterization of subdivided particles utilizing a pre-trained artificial intelligence model. The results are validated using three types of nanoparticles: nanospheres, dumbbells, and trimers. The automated segmentation of whole particles, as well as their individual subdivisions, is investigated using the Segment Anything Model, which is based on a pre-trained neural network. The subdivisions of the particles are organized into sets, which presents a novel approach in this field. These sets collate data derived from a large ensemble of specific particle domains indicating to which particle each subdomain belongs. The arrangement of subdivisions into sets to characterize complex nanoparticles expands the information gathered from microscopy analysis. The presented method, which employs a pre-trained deep learning model, outperforms traditional techniques by circumventing systemic errors and human bias. It can effectively automate the analysis of particles, thereby providing more accurate and efficient results.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72098/4/Monteiro_2-1ggsckoemu2jp2.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72098/4/Monteiro_2-1ggsckoemu2jp2.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>dos Santos, Jefersson A.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen