Publikation:

Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations

Lade...
Vorschaubild

Dateien

Albrecht_2-1gjv6okwku1658.pdf
Albrecht_2-1gjv6okwku1658.pdfGröße: 6.02 MBDownloads: 828

Datum

2019

Autor:innen

Albrecht, Wiebke
Kappenberg, Franziska
Brecklinghaus, Tim
Stoeber, Regina
Marchan, Rosemarie
Zhang, Mian
Ebbert, Kristina
Kirschner, Hendrik
Grinberg, Marianna
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Archives of toxicology. 2019, 93(6), pp. 1609-1637. ISSN 0340-5761. eISSN 1432-0738. Available under: doi: 10.1007/s00204-019-02492-9

Zusammenfassung

Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Cultivated hepatocytes, Cryopreserved 3D culture, Alternative methods, Hepatotoxicity, Performance metrics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ALBRECHT, Wiebke, Franziska KAPPENBERG, Tim BRECKLINGHAUS, Regina STOEBER, Rosemarie MARCHAN, Mian ZHANG, Kristina EBBERT, Hendrik KIRSCHNER, Marianna GRINBERG, Marcel LEIST, 2019. Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. In: Archives of toxicology. 2019, 93(6), pp. 1609-1637. ISSN 0340-5761. eISSN 1432-0738. Available under: doi: 10.1007/s00204-019-02492-9
BibTex
@article{Albrecht2019-06Predi-46644,
  year={2019},
  doi={10.1007/s00204-019-02492-9},
  title={Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations},
  number={6},
  volume={93},
  issn={0340-5761},
  journal={Archives of toxicology},
  pages={1609--1637},
  author={Albrecht, Wiebke and Kappenberg, Franziska and Brecklinghaus, Tim and Stoeber, Regina and Marchan, Rosemarie and Zhang, Mian and Ebbert, Kristina and Kirschner, Hendrik and Grinberg, Marianna and Leist, Marcel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46644">
    <dc:contributor>Kappenberg, Franziska</dc:contributor>
    <dc:creator>Leist, Marcel</dc:creator>
    <dc:creator>Brecklinghaus, Tim</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46644/1/Albrecht_2-1gjv6okwku1658.pdf"/>
    <dc:contributor>Kirschner, Hendrik</dc:contributor>
    <dc:creator>Kappenberg, Franziska</dc:creator>
    <dc:creator>Ebbert, Kristina</dc:creator>
    <dc:creator>Zhang, Mian</dc:creator>
    <dc:contributor>Leist, Marcel</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Stoeber, Regina</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46644/1/Albrecht_2-1gjv6okwku1658.pdf"/>
    <dc:contributor>Ebbert, Kristina</dc:contributor>
    <dc:creator>Kirschner, Hendrik</dc:creator>
    <dc:creator>Albrecht, Wiebke</dc:creator>
    <dc:contributor>Brecklinghaus, Tim</dc:contributor>
    <dc:contributor>Zhang, Mian</dc:contributor>
    <dc:contributor>Grinberg, Marianna</dc:contributor>
    <dc:contributor>Marchan, Rosemarie</dc:contributor>
    <dc:contributor>Albrecht, Wiebke</dc:contributor>
    <dc:creator>Grinberg, Marianna</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T12:35:19Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T12:35:19Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2019-06</dcterms:issued>
    <dc:creator>Marchan, Rosemarie</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46644"/>
    <dcterms:title>Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Stoeber, Regina</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen