Publikation:

New algorithms for finding approximate frequent item sets

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Braune, Christian
Grün, Sonja

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 211898

Projekt

BISON
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Soft Computing. 2011, 16(5), pp. 903-917. ISSN 1432-7643. eISSN 1433-7479. Available under: doi: 10.1007/s00500-011-0776-2

Zusammenfassung

In standard frequent item set mining a transaction supports an item set only if all items in the set are present. However, in many cases this is too strict a requirement that can render it impossible to find certain relevant groups of items. By relaxing the support definition, allowing for some items of a given set to be missing from a transaction, this drawback can be amended. The resulting item sets have been called approximate, fault-tolerant or fuzzy item sets. In this paper we present two new algorithms to find such item sets: the first is an extension of item set mining based on cover similarities and computes and evaluates the subset size occurrence distribution with a scheme that is related to the Eclat algorithm. The second employs a clustering-like approach, in which the distances are derived from the item covers with distance measures for sets or binary vectors and which is initialized with a one-dimensional Sammon projection of the distance matrix. We demonstrate the benefits of our algorithms by applying them to a concept detection task on the 2008/2009 Wikipedia Selection for schools and to the neurobiological task of detecting neuron ensembles in (simulated) parallel spike trains.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BORGELT, Christian, Christian BRAUNE, Tobias KÖTTER, Sonja GRÜN, 2011. New algorithms for finding approximate frequent item sets. In: Soft Computing. 2011, 16(5), pp. 903-917. ISSN 1432-7643. eISSN 1433-7479. Available under: doi: 10.1007/s00500-011-0776-2
BibTex
@article{Borgelt2011algor-23713,
  year={2011},
  doi={10.1007/s00500-011-0776-2},
  title={New algorithms for finding approximate frequent item sets},
  number={5},
  volume={16},
  issn={1432-7643},
  journal={Soft Computing},
  pages={903--917},
  author={Borgelt, Christian and Braune, Christian and Kötter, Tobias and Grün, Sonja}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23713">
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Grün, Sonja</dc:contributor>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dc:creator>Braune, Christian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-21T09:40:56Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Kötter, Tobias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-21T09:40:56Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23713"/>
    <dc:contributor>Braune, Christian</dc:contributor>
    <dcterms:abstract xml:lang="eng">In standard frequent item set mining a transaction supports an item set only if all items in the set are present. However, in many cases this is too strict a requirement that can render it impossible to find certain relevant groups of items. By relaxing the support definition, allowing for some items of a given set to be missing from a transaction, this drawback can be amended. The resulting item sets have been called approximate, fault-tolerant or fuzzy item sets. In this paper we present two new algorithms to find such item sets: the first is an extension of item set mining based on cover similarities and computes and evaluates the subset size occurrence distribution with a scheme that is related to the Eclat algorithm. The second employs a clustering-like approach, in which the distances are derived from the item covers with distance measures for sets or binary vectors and which is initialized with a one-dimensional Sammon projection of the distance matrix. We demonstrate the benefits of our algorithms by applying them to a concept detection task on the 2008/2009 Wikipedia Selection for schools and to the neurobiological task of detecting neuron ensembles in (simulated) parallel spike trains.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>Soft Computing ; 16 (2012), 5. - S. 903-917</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>New algorithms for finding approximate frequent item sets</dcterms:title>
    <dc:creator>Grün, Sonja</dc:creator>
    <dc:creator>Kötter, Tobias</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen