Publikation:

Machine-learned multi-system surrogate models for materials prediction

Lade...
Vorschaubild

Dateien

Nyshadham_2-1h3gbixbs24pl9.pdf
Nyshadham_2-1h3gbixbs24pl9.pdfGröße: 761.34 KBDownloads: 348

Datum

2019

Autor:innen

Nyshadham, Chandramouli
Bekker, Brayden
Shapeev, Alexander V.
Mueller, Tim
Rosenbrock, Conrad W.
Csányi, Gábor
Wingate, David W.
Hart, Gus L. W.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

npj Computational Materials. Nature Publishing Group. 2019, 5(1), 51. eISSN 2057-3960. Available under: doi: 10.1038/s41524-019-0189-9

Zusammenfassung

Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is <1 meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of <2.5% for all systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690NYSHADHAM, Chandramouli, Matthias RUPP, Brayden BEKKER, Alexander V. SHAPEEV, Tim MUELLER, Conrad W. ROSENBROCK, Gábor CSÁNYI, David W. WINGATE, Gus L. W. HART, 2019. Machine-learned multi-system surrogate models for materials prediction. In: npj Computational Materials. Nature Publishing Group. 2019, 5(1), 51. eISSN 2057-3960. Available under: doi: 10.1038/s41524-019-0189-9
BibTex
@article{Nyshadham2019-12Machi-52916,
  year={2019},
  doi={10.1038/s41524-019-0189-9},
  title={Machine-learned multi-system surrogate models for materials prediction},
  number={1},
  volume={5},
  journal={npj Computational Materials},
  author={Nyshadham, Chandramouli and Rupp, Matthias and Bekker, Brayden and Shapeev, Alexander V. and Mueller, Tim and Rosenbrock, Conrad W. and Csányi, Gábor and Wingate, David W. and Hart, Gus L. W.},
  note={Article Number: 51}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52916">
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:contributor>Mueller, Tim</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Nyshadham, Chandramouli</dc:creator>
    <dc:contributor>Shapeev, Alexander V.</dc:contributor>
    <dc:contributor>Rosenbrock, Conrad W.</dc:contributor>
    <dc:creator>Shapeev, Alexander V.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dc:creator>Mueller, Tim</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wingate, David W.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52916/3/Nyshadham_2-1h3gbixbs24pl9.pdf"/>
    <dc:creator>Hart, Gus L. W.</dc:creator>
    <dc:contributor>Nyshadham, Chandramouli</dc:contributor>
    <dc:contributor>Bekker, Brayden</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T08:15:27Z</dc:date>
    <dcterms:issued>2019-12</dcterms:issued>
    <dc:creator>Bekker, Brayden</dc:creator>
    <dc:contributor>Csányi, Gábor</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T08:15:27Z</dcterms:available>
    <dc:contributor>Hart, Gus L. W.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52916/3/Nyshadham_2-1h3gbixbs24pl9.pdf"/>
    <dc:creator>Rosenbrock, Conrad W.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52916"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Csányi, Gábor</dc:creator>
    <dcterms:abstract xml:lang="eng">Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is &lt;1 meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of &lt;2.5% for all systems.</dcterms:abstract>
    <dc:contributor>Wingate, David W.</dc:contributor>
    <dcterms:title>Machine-learned multi-system surrogate models for materials prediction</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen