Publikation: Machine-learned multi-system surrogate models for materials prediction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is <1 meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of <2.5% for all systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NYSHADHAM, Chandramouli, Matthias RUPP, Brayden BEKKER, Alexander V. SHAPEEV, Tim MUELLER, Conrad W. ROSENBROCK, Gábor CSÁNYI, David W. WINGATE, Gus L. W. HART, 2019. Machine-learned multi-system surrogate models for materials prediction. In: npj Computational Materials. Nature Publishing Group. 2019, 5(1), 51. eISSN 2057-3960. Available under: doi: 10.1038/s41524-019-0189-9BibTex
@article{Nyshadham2019-12Machi-52916, year={2019}, doi={10.1038/s41524-019-0189-9}, title={Machine-learned multi-system surrogate models for materials prediction}, number={1}, volume={5}, journal={npj Computational Materials}, author={Nyshadham, Chandramouli and Rupp, Matthias and Bekker, Brayden and Shapeev, Alexander V. and Mueller, Tim and Rosenbrock, Conrad W. and Csányi, Gábor and Wingate, David W. and Hart, Gus L. W.}, note={Article Number: 51} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52916"> <dc:creator>Rupp, Matthias</dc:creator> <dc:contributor>Mueller, Tim</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Nyshadham, Chandramouli</dc:creator> <dc:contributor>Shapeev, Alexander V.</dc:contributor> <dc:contributor>Rosenbrock, Conrad W.</dc:contributor> <dc:creator>Shapeev, Alexander V.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:creator>Mueller, Tim</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wingate, David W.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52916/3/Nyshadham_2-1h3gbixbs24pl9.pdf"/> <dc:creator>Hart, Gus L. W.</dc:creator> <dc:contributor>Nyshadham, Chandramouli</dc:contributor> <dc:contributor>Bekker, Brayden</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T08:15:27Z</dc:date> <dcterms:issued>2019-12</dcterms:issued> <dc:creator>Bekker, Brayden</dc:creator> <dc:contributor>Csányi, Gábor</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-19T08:15:27Z</dcterms:available> <dc:contributor>Hart, Gus L. W.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52916/3/Nyshadham_2-1h3gbixbs24pl9.pdf"/> <dc:creator>Rosenbrock, Conrad W.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52916"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Csányi, Gábor</dc:creator> <dcterms:abstract xml:lang="eng">Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is <1 meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of <2.5% for all systems.</dcterms:abstract> <dc:contributor>Wingate, David W.</dc:contributor> <dcterms:title>Machine-learned multi-system surrogate models for materials prediction</dcterms:title> </rdf:Description> </rdf:RDF>