Publikation:

Deep Learning VS. Traditional Algorithms for Saliency Prediction of Distorted Images

Lade...
Vorschaubild

Dateien

Zhao_2-1h5s3np44liel6.pdf
Zhao_2-1h5s3np44liel6.pdfGröße: 4.73 MBDownloads: 291

Datum

2020

Autor:innen

Zhao, Xin
Guo, Pengfei
Liu, Hantao

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2020 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2020, pp. 156-160. ISBN 978-1-72816-395-6. Available under: doi: 10.1109/ICIP40778.2020.9191203

Zusammenfassung

Saliency has been widely studied in relation to image quality assessment (IQA). The optimal use of saliency in IQA metrics, however, is nontrivial and largely depends on whether saliency can be accurately predicted for images containing various distortions. Although tremendous progress has been made in saliency modelling, very little is known about whether and to what extent state-of-the-art methods are beneficial for saliency prediction of distorted images. In this paper, we analyse the ability of deep learning versus traditional algorithms in predicting saliency, based on an IQA-aware saliency benchmark, the SIQ288 database. Building off the variations in model performance, we make recommendations for model selections for IQA applications.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Image quality assessment, saliency, eye-tracking, distortion, statistical analysis

Konferenz

2020 IEEE International Conference on Image Processing (ICIP), 25. Okt. 2020 - 28. Okt. 2020, Abu Dhabi, United Arab Emirates
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690ZHAO, Xin, Hanhe LIN, Pengfei GUO, Dietmar SAUPE, Hantao LIU, 2020. Deep Learning VS. Traditional Algorithms for Saliency Prediction of Distorted Images. 2020 IEEE International Conference on Image Processing (ICIP). Abu Dhabi, United Arab Emirates, 25. Okt. 2020 - 28. Okt. 2020. In: 2020 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2020, pp. 156-160. ISBN 978-1-72816-395-6. Available under: doi: 10.1109/ICIP40778.2020.9191203
BibTex
@inproceedings{Zhao2020Learn-54030,
  year={2020},
  doi={10.1109/ICIP40778.2020.9191203},
  title={Deep Learning VS. Traditional Algorithms for Saliency Prediction of Distorted Images},
  isbn={978-1-72816-395-6},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2020 IEEE International Conference on Image Processing (ICIP)},
  pages={156--160},
  author={Zhao, Xin and Lin, Hanhe and Guo, Pengfei and Saupe, Dietmar and Liu, Hantao}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54030">
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Guo, Pengfei</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54030/1/Zhao_2-1h5s3np44liel6.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zhao, Xin</dc:contributor>
    <dc:contributor>Guo, Pengfei</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Liu, Hantao</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-18T12:33:45Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-18T12:33:45Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54030"/>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dc:creator>Zhao, Xin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54030/1/Zhao_2-1h5s3np44liel6.pdf"/>
    <dcterms:title>Deep Learning VS. Traditional Algorithms for Saliency Prediction of Distorted Images</dcterms:title>
    <dc:contributor>Liu, Hantao</dc:contributor>
    <dcterms:abstract xml:lang="eng">Saliency has been widely studied in relation to image quality assessment (IQA). The optimal use of saliency in IQA metrics, however, is nontrivial and largely depends on whether saliency can be accurately predicted for images containing various distortions. Although tremendous progress has been made in saliency modelling, very little is known about whether and to what extent state-of-the-art methods are beneficial for saliency prediction of distorted images. In this paper, we analyse the ability of deep learning versus traditional algorithms in predicting saliency, based on an IQA-aware saliency benchmark, the SIQ288 database. Building off the variations in model performance, we make recommendations for model selections for IQA applications.</dcterms:abstract>
    <dc:creator>Saupe, Dietmar</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen