Publikation:

Set-oriented multi objective optimal control of elliptic non-linear partial differential equations using POD objectives and gradient

Lade...
Vorschaubild

Dateien

Reichle_2-1h6pp1cxptbap6.pdf
Reichle_2-1h6pp1cxptbap6.pdfGröße: 2.19 MBDownloads: 310

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this thesis we use the Reduced Basis (RB) method to sol- ve multiobjective optimization problems controlled by parameter dependent semilinear elliptic partial differential equations. First, we show the existence and uniqueness of solutions of the partial differential equations under con- sideration. Subsequently, we introduce the RB method to be able to signifi- cantly reduce the computational effort compared to standard approximation schemes like the Finite Element (FE) method. Here we work with the true error and an a-posteriori error estimator. In addition, we use the Discrete Empirical Interpolation method to solve the surrogate model independently of the dimension of the FE space so we can save even more computational effort. In the optimization step we use a set-oriented subdivision algorithm based on gradient calculations of the objective functions to solve the problem. To evaluate the objective functions and their gradients in the optimization step we use the surrogate model and through this we save a lot of compu- tational effort. In order to take inexactness of the gradients into account, e.g. caused by the surrogate model, we derive an additional condition for the descent direction. We prove the convergence with this new descent direction to a tight superset of the Pareto set in this thesis. Finally we examine our results using numerical examples.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690REICHLE, Lena, 2020. Set-oriented multi objective optimal control of elliptic non-linear partial differential equations using POD objectives and gradient [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Reichle2020Setor-49233,
  year={2020},
  title={Set-oriented multi objective optimal control of elliptic non-linear partial differential equations using POD objectives and gradient},
  address={Konstanz},
  school={Universität Konstanz},
  author={Reichle, Lena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49233">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-21T07:15:27Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49233"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:abstract xml:lang="eng">In this thesis we use the Reduced Basis (RB) method to sol- ve multiobjective optimization problems controlled by parameter dependent semilinear elliptic partial differential equations. First, we show the existence and uniqueness of solutions of the partial differential equations under con- sideration. Subsequently, we introduce the RB method to be able to signifi- cantly reduce the computational effort compared to standard approximation schemes like the Finite Element (FE) method. Here we work with the true error and an a-posteriori error estimator. In addition, we use the Discrete Empirical Interpolation method to solve the surrogate model independently of the dimension of the FE space so we can save even more computational effort. In the optimization step we use a set-oriented subdivision algorithm based on gradient calculations of the objective functions to solve the problem. To evaluate the objective functions and their gradients in the optimization step we use the surrogate model and through this we save a lot of compu- tational effort. In order to take inexactness of the gradients into account, e.g. caused by the surrogate model, we derive an additional condition for the descent direction. We prove the convergence with this new descent direction to a tight superset of the Pareto set in this thesis. Finally we examine our results using numerical examples.</dcterms:abstract>
    <dcterms:title>Set-oriented multi objective optimal control of elliptic non-linear partial differential equations using POD objectives and gradient</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Reichle, Lena</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49233/3/Reichle_2-1h6pp1cxptbap6.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-21T07:15:27Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Reichle, Lena</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49233/3/Reichle_2-1h6pp1cxptbap6.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2020
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen