Publikation: Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider a phenotype-structured model of evolutionary dynamics in a population of cancer cells exposed to the action of a cytotoxic drug. The model consists of a nonlocal parabolic equation governing the evolution of the cell population density function. We develop a novel method for constructing exact solutions to the model equation, which allows for a systematic investigation of the way in which the size and the phenotypic composition of the cell population change in response to variations of the drug dose and other evolutionary parameters. Moreover, we address numerical optimal control for a calibrated version of the model based on biological data from the existing literature, in order to identify the drug delivery schedule that makes it possible to minimise either the population size at the end of the treatment or the average population size during the course of treatment. The results obtained challenge the notion that traditional high-dose therapy represents a “one-fits-all solution” in anticancer therapy by showing that the continuous administration of a relatively low dose of the cytotoxic drug performs more closely to i.e. the optimal dosing regimen to minimise the average size of the cancer cell population during the course of treatment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ALMEIDA, Luís, Patrizia BAGNERINI, Giulia FABRINI, Barry D. HUGHES, Tommaso LORENZI, 2019. Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model. In: ESAIM: Mathematical Modelling and Numerical Analysis. 2019, 53(4), pp. 1157-1190. ISSN 0764-583X. eISSN 1290-3841. Available under: doi: 10.1051/m2an/2019010BibTex
@article{Almeida2019-07-04Evolu-46589, year={2019}, doi={10.1051/m2an/2019010}, title={Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model}, number={4}, volume={53}, issn={0764-583X}, journal={ESAIM: Mathematical Modelling and Numerical Analysis}, pages={1157--1190}, author={Almeida, Luís and Bagnerini, Patrizia and Fabrini, Giulia and Hughes, Barry D. and Lorenzi, Tommaso} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46589"> <dc:creator>Almeida, Luís</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-31T13:43:02Z</dc:date> <dc:creator>Hughes, Barry D.</dc:creator> <dc:creator>Fabrini, Giulia</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-31T13:43:02Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46589"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model</dcterms:title> <dc:contributor>Lorenzi, Tommaso</dc:contributor> <dcterms:abstract xml:lang="eng">We consider a phenotype-structured model of evolutionary dynamics in a population of cancer cells exposed to the action of a cytotoxic drug. The model consists of a nonlocal parabolic equation governing the evolution of the cell population density function. We develop a novel method for constructing exact solutions to the model equation, which allows for a systematic investigation of the way in which the size and the phenotypic composition of the cell population change in response to variations of the drug dose and other evolutionary parameters. Moreover, we address numerical optimal control for a calibrated version of the model based on biological data from the existing literature, in order to identify the drug delivery schedule that makes it possible to minimise either the population size at the end of the treatment or the average population size during the course of treatment. The results obtained challenge the notion that traditional high-dose therapy represents a “one-fits-all solution” in anticancer therapy by showing that the continuous administration of a relatively low dose of the cytotoxic drug performs more closely to i.e. the optimal dosing regimen to minimise the average size of the cancer cell population during the course of treatment.</dcterms:abstract> <dc:contributor>Bagnerini, Patrizia</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2019-07-04</dcterms:issued> <dc:contributor>Fabrini, Giulia</dc:contributor> <dc:creator>Lorenzi, Tommaso</dc:creator> <dc:contributor>Almeida, Luís</dc:contributor> <dc:contributor>Hughes, Barry D.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Bagnerini, Patrizia</dc:creator> </rdf:Description> </rdf:RDF>