Publikation: Evolution and connectivity in the world-wide migration system of the mallard : inferences from mitochondrial DNA
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background:
Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere.
Results:
Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (FST = 0.51). Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA) at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold) since then and little migration (not statistically different from zero).
Conclusions:
Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing hypotheses and conclude that a complex mix of historical, recent and anthropogenic factors shaped the current mallard populations. We refute population classification based on flyways proposed by ornithologists and managers, because they seem to have little biological meaning. Our results have implications for wetland management and conservation, with special regard to the release of farmed mallards for hunting, as well as for the possible transmission of Avian Influenza by mallards due to migration.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRAUS, Robert, Anne ZEDDEMAN, Pim VAN HOOFT, Dmitry SARTAKOV, Sergei A. SOLOVIEV, Ronald C. YDENBERG, Herbert H. T. PRINS, 2011. Evolution and connectivity in the world-wide migration system of the mallard : inferences from mitochondrial DNA. In: BMC genetics. BioMed Central. 2011, 12, 99. eISSN 1471-2156. Available under: doi: 10.1186/1471-2156-12-99BibTex
@article{Kraus2011-11-17Evolu-50978, year={2011}, doi={10.1186/1471-2156-12-99}, title={Evolution and connectivity in the world-wide migration system of the mallard : inferences from mitochondrial DNA}, volume={12}, journal={BMC genetics}, author={Kraus, Robert and Zeddeman, Anne and van Hooft, Pim and Sartakov, Dmitry and Soloviev, Sergei A. and Ydenberg, Ronald C. and Prins, Herbert H. T.}, note={Article Number: 99} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50978"> <dc:contributor>Prins, Herbert H. T.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Zeddeman, Anne</dc:contributor> <dc:contributor>Kraus, Robert</dc:contributor> <dc:rights>Attribution 2.0 Generic</dc:rights> <dc:creator>Kraus, Robert</dc:creator> <dc:creator>Zeddeman, Anne</dc:creator> <dc:creator>van Hooft, Pim</dc:creator> <dc:creator>Sartakov, Dmitry</dc:creator> <dcterms:title>Evolution and connectivity in the world-wide migration system of the mallard : inferences from mitochondrial DNA</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50978/3/Kraus_2-1hpu7xy2ztkmj4.pdf"/> <dc:contributor>Ydenberg, Ronald C.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Soloviev, Sergei A.</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/2.0/"/> <dc:contributor>van Hooft, Pim</dc:contributor> <dc:creator>Prins, Herbert H. T.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50978"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-23T08:02:02Z</dc:date> <dcterms:abstract xml:lang="eng">Background:<br />Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere.<br /><br />Results:<br />Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (FST = 0.51). Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA) at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold) since then and little migration (not statistically different from zero).<br /><br />Conclusions:<br />Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing hypotheses and conclude that a complex mix of historical, recent and anthropogenic factors shaped the current mallard populations. We refute population classification based on flyways proposed by ornithologists and managers, because they seem to have little biological meaning. Our results have implications for wetland management and conservation, with special regard to the release of farmed mallards for hunting, as well as for the possible transmission of Avian Influenza by mallards due to migration.</dcterms:abstract> <dcterms:issued>2011-11-17</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50978/3/Kraus_2-1hpu7xy2ztkmj4.pdf"/> <dc:contributor>Soloviev, Sergei A.</dc:contributor> <dc:contributor>Sartakov, Dmitry</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-23T08:02:02Z</dcterms:available> <dc:creator>Ydenberg, Ronald C.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> </rdf:Description> </rdf:RDF>