Publikation: JustClick : Personalized Image Recommendation via Exploratory Search From Large-Scale Flickr Images
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we have developed a novel framework called JustClick to enable personalized image recommendation via exploratory search from large-scale collections of manuallyannotated Flickr images. First, a topic network is automatically generated to summarize large-scale collections of manuallyannotated Flickr images at a semantic level. Hyperbolic visualization is further used to enable interactive navigation and exploration of the topic network, so that users can gain insights of large-scale image collections at the first glance, build up their mental query models interactively and specify their queries (i.e., image needs) more precisely by selecting the image topics on the topic network directly. Thus our personalized query recommendation framework can effectively address both the problem of query formulation and the problem of vocabulary discrepancy and null returns. Second, a limited number of images are automatically recommended as the most representative images according to their representativeness for a given image topic. Kernel principal component analysis and hyperbolic visualization are seamlessly integrated to organize and layout the recommended images (i.e., most representative images) according to their nonlinear visual similarities, so that users can assess the relevance between the recommended images and their real query intentions interactively. An interactive interface is implemented to allow users to express their time-varying query intentions and to direct the system to more relevant images according to their personal preferences. Our experiments on large-scale collections of Flickr image collections show very positive results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FAN, Jianping, Daniel A. KEIM, Yuli GAO, Hangzai LUO, Zongmin LI, 2009. JustClick : Personalized Image Recommendation via Exploratory Search From Large-Scale Flickr Images. In: IEEE Transactions on Circuits and Systems for Video Technology. 2009, 19(2), pp. 273-288. Available under: doi: 10.1109/TCSVT.2008.2009258BibTex
@article{Fan2009JustC-3053, year={2009}, doi={10.1109/TCSVT.2008.2009258}, title={JustClick : Personalized Image Recommendation via Exploratory Search From Large-Scale Flickr Images}, number={2}, volume={19}, journal={IEEE Transactions on Circuits and Systems for Video Technology}, pages={273--288}, author={Fan, Jianping and Keim, Daniel A. and Gao, Yuli and Luo, Hangzai and Li, Zongmin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3053"> <dcterms:abstract xml:lang="eng">In this paper, we have developed a novel framework called JustClick to enable personalized image recommendation via exploratory search from large-scale collections of manuallyannotated Flickr images. First, a topic network is automatically generated to summarize large-scale collections of manuallyannotated Flickr images at a semantic level. Hyperbolic visualization is further used to enable interactive navigation and exploration of the topic network, so that users can gain insights of large-scale image collections at the first glance, build up their mental query models interactively and specify their queries (i.e., image needs) more precisely by selecting the image topics on the topic network directly. Thus our personalized query recommendation framework can effectively address both the problem of query formulation and the problem of vocabulary discrepancy and null returns. Second, a limited number of images are automatically recommended as the most representative images according to their representativeness for a given image topic. Kernel principal component analysis and hyperbolic visualization are seamlessly integrated to organize and layout the recommended images (i.e., most representative images) according to their nonlinear visual similarities, so that users can assess the relevance between the recommended images and their real query intentions interactively. An interactive interface is implemented to allow users to express their time-varying query intentions and to direct the system to more relevant images according to their personal preferences. Our experiments on large-scale collections of Flickr image collections show very positive results.</dcterms:abstract> <dc:contributor>Luo, Hangzai</dc:contributor> <dcterms:bibliographicCitation>Publ. in: IEEE Transactions on Circuits and Systems for Video Technology 19 (2009), 2, pp. 273-288</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:57Z</dcterms:available> <dc:contributor>Gao, Yuli</dc:contributor> <dc:creator>Luo, Hangzai</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:57Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2009</dcterms:issued> <dc:contributor>Fan, Jianping</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Fan, Jianping</dc:creator> <dc:creator>Li, Zongmin</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>JustClick : Personalized Image Recommendation via Exploratory Search From Large-Scale Flickr Images</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3053"/> <dc:contributor>Li, Zongmin</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Gao, Yuli</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> </rdf:Description> </rdf:RDF>