Pascal’s Triangle : Cellular Automata and Attractors
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Being introduced to the Pascal triangle for the first time, one might think that this mathematical object was a rather innocent one. Surprisingly it has attracted the attention of innumerable scientists and amateur scientists over many centuries. One of the earliest mentions (long before Pascal’s name became associated with it) is in a Chinese document from around 1303.1 Boris A. Bondarenko,2 in his beautiful recently published book, counts several hundred publications which have been devoted to the Pascal triangle and related problems just over the last two hundred years. Prominent mathematicians as well as popular science writers such as Ian Stewart,3 Evgeni B. Dynkin and Wladimir A. Uspenski,4 and Stephen Wolfram5 have devoted articles to the marvelous relationship between elementary number theory and the geometrical patterns found in the Pascal triangle. In chapter 2 we introduced one example: the relation between the Pascal triangle and the Sierpinski gasket.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PEITGEN, Heinz-Otto, Hartmut JÜRGENS, Dietmar SAUPE, 2004. Pascal’s Triangle : Cellular Automata and Attractors. In: PEITGEN, Heinz-Otto, ed., Hartmut JÜRGENS, ed., Dietmar SAUPE, ed.. Chaos and Fractals : New Frontiers of Science. 2. ed.. New York: Springer, 2004, pp. 377-422. ISBN 978-0-387-20229-7. Available under: doi: 10.1007/0-387-21823-8_9BibTex
@incollection{Peitgen2004Pasca-42198, year={2004}, doi={10.1007/0-387-21823-8_9}, title={Pascal’s Triangle : Cellular Automata and Attractors}, edition={2. ed.}, isbn={978-0-387-20229-7}, publisher={Springer}, address={New York}, booktitle={Chaos and Fractals : New Frontiers of Science}, pages={377--422}, editor={Peitgen, Heinz-Otto and Jürgens, Hartmut and Saupe, Dietmar}, author={Peitgen, Heinz-Otto and Jürgens, Hartmut and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42198"> <dc:creator>Saupe, Dietmar</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Peitgen, Heinz-Otto</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:28:28Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-28T13:28:28Z</dcterms:available> <dcterms:issued>2004</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42198"/> <dcterms:abstract xml:lang="eng">Being introduced to the Pascal triangle for the first time, one might think that this mathematical object was a rather innocent one. Surprisingly it has attracted the attention of innumerable scientists and amateur scientists over many centuries. One of the earliest mentions (long before Pascal’s name became associated with it) is in a Chinese document from around 1303.1 Boris A. Bondarenko,2 in his beautiful recently published book, counts several hundred publications which have been devoted to the Pascal triangle and related problems just over the last two hundred years. Prominent mathematicians as well as popular science writers such as Ian Stewart,3 Evgeni B. Dynkin and Wladimir A. Uspenski,4 and Stephen Wolfram5 have devoted articles to the marvelous relationship between elementary number theory and the geometrical patterns found in the Pascal triangle. In chapter 2 we introduced one example: the relation between the Pascal triangle and the Sierpinski gasket.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:title>Pascal’s Triangle : Cellular Automata and Attractors</dcterms:title> <dc:creator>Jürgens, Hartmut</dc:creator> <dc:creator>Peitgen, Heinz-Otto</dc:creator> <dc:contributor>Jürgens, Hartmut</dc:contributor> </rdf:Description> </rdf:RDF>