Publikation:

3D-MuPPET : 3D Multi-Pigeon Pose Estimation and Tracking

Lade...
Vorschaubild

Dateien

Waldmann_2-1i1ifcvy1d6hl0.pdf
Waldmann_2-1i1ifcvy1d6hl0.pdfGröße: 2.15 MBDownloads: 26

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117 - 422037984
Institutionen der Bundesrepublik Deutschland: 01IS23046B

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Computer Vision. Springer. 2024, 132(10), S. 4235-4252. ISSN 0920-5691. eISSN 1573-1405. Verfügbar unter: doi: 10.1007/s11263-024-02074-y

Zusammenfassung

Markerless methods for animal posture tracking have been rapidly developing recently, but frameworks and benchmarks for tracking large animal groups in 3D are still lacking. To overcome this gap in the literature, we present 3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons at interactive speed using multiple camera views. We train a pose estimator to infer 2D keypoints and bounding boxes of multiple pigeons, then triangulate the keypoints to 3D. For identity matching of individuals in all views, we first dynamically match 2D detections to global identities in the first frame, then use a 2D tracker to maintain IDs across views in subsequent frames. We achieve comparable accuracy to a state of the art 3D pose estimator in terms of median error and Percentage of Correct Keypoints. Additionally, we benchmark the inference speed of 3D-MuPPET, with up to 9.45 fps in 2D and 1.89 fps in 3D, and perform quantitative tracking evaluation, which yields encouraging results. Finally, we showcase two novel applications for 3D-MuPPET. First, we train a model with data of single pigeons and achieve comparable results in 2D and 3D posture estimation for up to 5 pigeons. Second, we show that 3D-MuPPET also works in outdoors without additional annotations from natural environments. Both use cases simplify the domain shift to new species and environments, largely reducing annotation effort needed for 3D posture tracking. To the best of our knowledge we are the first to present a framework for 2D/3D animal posture and trajectory tracking that works in both indoor and outdoor environments for up to 10 individuals. We hope that the framework can open up new opportunities in studying animal collective behaviour and encourages further developments in 3D multi-animal posture tracking.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WALDMANN, Urs, Hoi Hang CHAN, Hemal NAIK, Mate NAGY, Iain D. COUZIN, Oliver DEUSSEN, Bastian GOLDLÜCKE, Fumihiro KANO, 2024. 3D-MuPPET : 3D Multi-Pigeon Pose Estimation and Tracking. In: International Journal of Computer Vision. Springer. 2024, 132(10), S. 4235-4252. ISSN 0920-5691. eISSN 1573-1405. Verfügbar unter: doi: 10.1007/s11263-024-02074-y
BibTex
@article{Waldmann2024-103DMuP-69968,
  year={2024},
  doi={10.1007/s11263-024-02074-y},
  title={3D-MuPPET : 3D Multi-Pigeon Pose Estimation and Tracking},
  number={10},
  volume={132},
  issn={0920-5691},
  journal={International Journal of Computer Vision},
  pages={4235--4252},
  author={Waldmann, Urs and Chan, Hoi Hang and Naik, Hemal and Nagy, Mate and Couzin, Iain D. and Deussen, Oliver and Goldlücke, Bastian and Kano, Fumihiro}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69968">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69968/1/Waldmann_2-1i1ifcvy1d6hl0.pdf"/>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-15T07:08:56Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Nagy, Mate</dc:contributor>
    <dc:contributor>Kano, Fumihiro</dc:contributor>
    <dcterms:title>3D-MuPPET : 3D Multi-Pigeon Pose Estimation and Tracking</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Kano, Fumihiro</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Waldmann, Urs</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69968/1/Waldmann_2-1i1ifcvy1d6hl0.pdf"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:issued>2024-10</dcterms:issued>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:abstract>Markerless methods for animal posture tracking have been rapidly developing recently, but frameworks and benchmarks for tracking large animal groups in 3D are still lacking. To overcome this gap in the literature, we present 3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons at interactive speed using multiple camera views. We train a pose estimator to infer 2D keypoints and bounding boxes of multiple pigeons, then triangulate the keypoints to 3D. For identity matching of individuals in all views, we first dynamically match 2D detections to global identities in the first frame, then use a 2D tracker to maintain IDs across views in subsequent frames. We achieve comparable accuracy to a state of the art 3D pose estimator in terms of median error and Percentage of Correct Keypoints. Additionally, we benchmark the inference speed of 3D-MuPPET, with up to 9.45 fps in 2D and 1.89 fps in 3D, and perform quantitative tracking evaluation, which yields encouraging results. Finally, we showcase two novel applications for 3D-MuPPET. First, we train a model with data of single pigeons and achieve comparable results in 2D and 3D posture estimation for up to 5 pigeons. Second, we show that 3D-MuPPET also works in outdoors without additional annotations from natural environments. Both use cases simplify the domain shift to new species and environments, largely reducing annotation effort needed for 3D posture tracking. To the best of our knowledge we are the first to present a framework for 2D/3D animal posture and trajectory tracking that works in both indoor and outdoor environments for up to 10 individuals. We hope that the framework can open up new opportunities in studying animal collective behaviour and encourages further developments in 3D multi-animal posture tracking.</dcterms:abstract>
    <dc:contributor>Chan, Hoi Hang</dc:contributor>
    <dc:contributor>Naik, Hemal</dc:contributor>
    <dc:creator>Chan, Hoi Hang</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Nagy, Mate</dc:creator>
    <dc:creator>Waldmann, Urs</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-15T07:08:56Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69968"/>
    <dc:creator>Naik, Hemal</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
The datasets generated during and/or analysed
Diese Publikation teilen