Publikation:

Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Hao, Ming
Dayal, Umeshwar
Haug, Lars-Erik
Hsu, Mei-Chun

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, 2012, pp. 82940H. SPIE Proceedings. 8294. Available under: doi: 10.1117/12.912202

Zusammenfassung

Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IS&T/SPIE Electronic Imaging, Burlingame, California, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAO, Ming, Christian ROHRDANTZ, Halldor JANETZKO, Daniel A. KEIM, Umeshwar DAYAL, Lars-Erik HAUG, Mei-Chun HSU, 2012. Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams. IS&T/SPIE Electronic Imaging. Burlingame, California, USA. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, 2012, pp. 82940H. SPIE Proceedings. 8294. Available under: doi: 10.1117/12.912202
BibTex
@inproceedings{Hao2012-06-19Integ-22598,
  year={2012},
  doi={10.1117/12.912202},
  title={Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams},
  number={8294},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2012},
  editor={Wong, Pak Chung},
  author={Hao, Ming and Rohrdantz, Christian and Janetzko, Halldor and Keim, Daniel A. and Dayal, Umeshwar and Haug, Lars-Erik and Hsu, Mei-Chun}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22598">
    <dc:creator>Hsu, Mei-Chun</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22598"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hao, Ming</dc:contributor>
    <dcterms:bibliographicCitation>Visualization and Data Analysis 2012 : 23-25 January 2012, Burlingame, California, United States / Pak Chung Wong, ... (eds.). - Bellingham, Wash. : SPIE, 2012. - Artikelnummer: 82940H - ISBN 978-0-8194-8941-8</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).</dcterms:abstract>
    <dc:contributor>Haug, Lars-Erik</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dcterms:title>Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams</dcterms:title>
    <dc:creator>Hao, Ming</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-05T07:04:56Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-05T07:04:56Z</dcterms:available>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2012-06-19</dcterms:issued>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hsu, Mei-Chun</dc:contributor>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Haug, Lars-Erik</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen