Publikation: Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming, Christian ROHRDANTZ, Halldor JANETZKO, Daniel A. KEIM, Umeshwar DAYAL, Lars-Erik HAUG, Mei-Chun HSU, 2012. Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams. IS&T/SPIE Electronic Imaging. Burlingame, California, USA. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, 2012, pp. 82940H. SPIE Proceedings. 8294. Available under: doi: 10.1117/12.912202BibTex
@inproceedings{Hao2012-06-19Integ-22598, year={2012}, doi={10.1117/12.912202}, title={Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams}, number={8294}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2012}, editor={Wong, Pak Chung}, author={Hao, Ming and Rohrdantz, Christian and Janetzko, Halldor and Keim, Daniel A. and Dayal, Umeshwar and Haug, Lars-Erik and Hsu, Mei-Chun} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22598"> <dc:creator>Hsu, Mei-Chun</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22598"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hao, Ming</dc:contributor> <dcterms:bibliographicCitation>Visualization and Data Analysis 2012 : 23-25 January 2012, Burlingame, California, United States / Pak Chung Wong, ... (eds.). - Bellingham, Wash. : SPIE, 2012. - Artikelnummer: 82940H - ISBN 978-0-8194-8941-8</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).</dcterms:abstract> <dc:contributor>Haug, Lars-Erik</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Rohrdantz, Christian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Rohrdantz, Christian</dc:creator> <dcterms:title>Integrating Sentiment Analysis and Term Associations with Geo-Temporal Visualizations on Customer Feedback Streams</dcterms:title> <dc:creator>Hao, Ming</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-05T07:04:56Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-05T07:04:56Z</dcterms:available> <dc:creator>Janetzko, Halldor</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>2012-06-19</dcterms:issued> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hsu, Mei-Chun</dc:contributor> <dc:contributor>Janetzko, Halldor</dc:contributor> <dc:creator>Haug, Lars-Erik</dc:creator> </rdf:Description> </rdf:RDF>