Publikation:

ClusterSets : Optimizing Planar Clusters in Categorical Point Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Geiger, Jakob
Haunert, Jan-Henrik
Kindermann, Philipp
Mchedlidze, Tamara
Nöllenburg, Martin
Okamoto, Yoshio
Wolff, Alexander

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. Wiley. 2021, 40(3), pp. 471-481. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14322

Zusammenfassung

In geographic data analysis, one is often given point data of different categories (such as facilities of a university categorized by department). Drawing upon recent research on set visualization, we want to visualize category membership by connecting points of the same category with visual links. Existing approaches that follow this path usually insist on connecting all members of a category, which may lead to many crossings and visual clutter. We propose an approach that avoids crossings between connections of different categories completely. Instead of connecting all data points of the same category, we subdivide categories into smaller, local clusters where needed. We do a case study comparing the legibility of drawings produced by our approach and those by existing approaches.

In our problem formulation, we are additionally given a graph G on the data points whose edges express some sort of proximity. Our aim is to find a subgraph G′ of G with the following properties: (i) edges connect only data points of the same category, (ii) no two edges cross, and (iii) the number of connected components (clusters) is minimized. We then visualize the clusters in G′. For arbitrary graphs, the resulting optimization problem, Cluster Minimization, is NP-hard (even to approximate). Therefore, we introduce two heuristics. We do an extensive benchmark test on real-world data. Comparisons with exact solutions indicate that our heuristics do astonishing well for certain relative-neighborhood graphs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GEIGER, Jakob, Sabine CORNELSEN, Jan-Henrik HAUNERT, Philipp KINDERMANN, Tamara MCHEDLIDZE, Martin NÖLLENBURG, Yoshio OKAMOTO, Alexander WOLFF, 2021. ClusterSets : Optimizing Planar Clusters in Categorical Point Data. In: Computer Graphics Forum. Wiley. 2021, 40(3), pp. 471-481. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14322
BibTex
@article{Geiger2021Clust-54375,
  year={2021},
  doi={10.1111/cgf.14322},
  title={ClusterSets : Optimizing Planar Clusters in Categorical Point Data},
  number={3},
  volume={40},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={471--481},
  author={Geiger, Jakob and Cornelsen, Sabine and Haunert, Jan-Henrik and Kindermann, Philipp and Mchedlidze, Tamara and Nöllenburg, Martin and Okamoto, Yoshio and Wolff, Alexander}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54375">
    <dc:creator>Kindermann, Philipp</dc:creator>
    <dc:contributor>Nöllenburg, Martin</dc:contributor>
    <dc:creator>Okamoto, Yoshio</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Haunert, Jan-Henrik</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-21T08:19:29Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Geiger, Jakob</dc:contributor>
    <dc:contributor>Wolff, Alexander</dc:contributor>
    <dc:creator>Geiger, Jakob</dc:creator>
    <dc:contributor>Okamoto, Yoshio</dc:contributor>
    <dcterms:abstract xml:lang="eng">In geographic data analysis, one is often given point data of different categories (such as facilities of a university categorized by department). Drawing upon recent research on set visualization, we want to visualize category membership by connecting points of the same category with visual links. Existing approaches that follow this path usually insist on connecting all members of a category, which may lead to many crossings and visual clutter. We propose an approach that avoids crossings between connections of different categories completely. Instead of connecting all data points of the same category, we subdivide categories into smaller, local clusters where needed. We do a case study comparing the legibility of drawings produced by our approach and those by existing approaches.&lt;br /&gt;&lt;br /&gt;In our problem formulation, we are additionally given a graph G on the data points whose edges express some sort of proximity. Our aim is to find a subgraph G′ of G with the following properties: (i) edges connect only data points of the same category, (ii) no two edges cross, and (iii) the number of connected components (clusters) is minimized. We then visualize the clusters in G′. For arbitrary graphs, the resulting optimization problem, Cluster Minimization, is NP-hard (even to approximate). Therefore, we introduce two heuristics. We do an extensive benchmark test on real-world data. Comparisons with exact solutions indicate that our heuristics do astonishing well for certain relative-neighborhood graphs.</dcterms:abstract>
    <dc:contributor>Mchedlidze, Tamara</dc:contributor>
    <dc:contributor>Cornelsen, Sabine</dc:contributor>
    <dc:creator>Wolff, Alexander</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-21T08:19:29Z</dcterms:available>
    <dc:contributor>Kindermann, Philipp</dc:contributor>
    <dc:creator>Nöllenburg, Martin</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:title>ClusterSets : Optimizing Planar Clusters in Categorical Point Data</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54375"/>
    <dc:creator>Mchedlidze, Tamara</dc:creator>
    <dc:creator>Haunert, Jan-Henrik</dc:creator>
    <dc:creator>Cornelsen, Sabine</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen