Publikation:

Towards A Rigorous Evaluation Of XAI Methods On Time Series

Lade...
Vorschaubild

Dateien

Schlegel_2-1iaybk1cefn2y7.pdf
Schlegel_2-1iaybk1cefn2y7.pdfGröße: 487.17 KBDownloads: 688

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway, NJ: IEEE, 2019, pp. 4321-4325. ISSN 2473-9936. eISSN 2473-9944. ISBN 978-1-72815-023-9. Available under: doi: 10.1109/ICCVW.2019.00516

Zusammenfassung

Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Time-Series, explainable-ai, explainable-ai-evaluation

Konferenz

2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 27. Okt. 2019 - 28. Okt. 2019, Seoul, Korea (South)
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHLEGEL, Udo, Hiba ARNOUT, Mennatallah EL-ASSADY, Daniela OELKE, Daniel A. KEIM, 2019. Towards A Rigorous Evaluation Of XAI Methods On Time Series. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South), 27. Okt. 2019 - 28. Okt. 2019. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway, NJ: IEEE, 2019, pp. 4321-4325. ISSN 2473-9936. eISSN 2473-9944. ISBN 978-1-72815-023-9. Available under: doi: 10.1109/ICCVW.2019.00516
BibTex
@inproceedings{Schlegel2019-10Towar-50801,
  year={2019},
  doi={10.1109/ICCVW.2019.00516},
  title={Towards A Rigorous Evaluation Of XAI Methods On Time Series},
  isbn={978-1-72815-023-9},
  issn={2473-9936},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)},
  pages={4321--4325},
  author={Schlegel, Udo and Arnout, Hiba and El-Assady, Mennatallah and Oelke, Daniela and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50801">
    <dcterms:title>Towards A Rigorous Evaluation Of XAI Methods On Time Series</dcterms:title>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:41:53Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:41:53Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50801/1/Schlegel_2-1iaybk1cefn2y7.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:issued>2019-10</dcterms:issued>
    <dc:contributor>Oelke, Daniela</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Arnout, Hiba</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50801"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Oelke, Daniela</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Arnout, Hiba</dc:creator>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50801/1/Schlegel_2-1iaybk1cefn2y7.pdf"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dcterms:abstract xml:lang="eng">Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen