Publikation: Towards A Rigorous Evaluation Of XAI Methods On Time Series
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHLEGEL, Udo, Hiba ARNOUT, Mennatallah EL-ASSADY, Daniela OELKE, Daniel A. KEIM, 2019. Towards A Rigorous Evaluation Of XAI Methods On Time Series. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South), 27. Okt. 2019 - 28. Okt. 2019. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway, NJ: IEEE, 2019, pp. 4321-4325. ISSN 2473-9936. eISSN 2473-9944. ISBN 978-1-72815-023-9. Available under: doi: 10.1109/ICCVW.2019.00516BibTex
@inproceedings{Schlegel2019-10Towar-50801, year={2019}, doi={10.1109/ICCVW.2019.00516}, title={Towards A Rigorous Evaluation Of XAI Methods On Time Series}, isbn={978-1-72815-023-9}, issn={2473-9936}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)}, pages={4321--4325}, author={Schlegel, Udo and Arnout, Hiba and El-Assady, Mennatallah and Oelke, Daniela and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50801"> <dcterms:title>Towards A Rigorous Evaluation Of XAI Methods On Time Series</dcterms:title> <dc:creator>Schlegel, Udo</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:41:53Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:41:53Z</dc:date> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50801/1/Schlegel_2-1iaybk1cefn2y7.pdf"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>2019-10</dcterms:issued> <dc:contributor>Oelke, Daniela</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Arnout, Hiba</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50801"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Oelke, Daniela</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Arnout, Hiba</dc:creator> <dc:contributor>Schlegel, Udo</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50801/1/Schlegel_2-1iaybk1cefn2y7.pdf"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <dcterms:abstract xml:lang="eng">Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.</dcterms:abstract> </rdf:Description> </rdf:RDF>