Publikation:

A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization

Lade...
Vorschaubild

Dateien

Banholzer_2-1id1qy27qa8666.pdf
Banholzer_2-1id1qy27qa8666.pdfGröße: 626.4 KBDownloads: 171

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Submitted

Wird erscheinen in

Zusammenfassung

In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, where the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed. Numerical examples illustrate the efficiency of the proposed solution technique.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BANHOLZER, Stefan, Luca MECHELLI, Stefan VOLKWEIN, 2022. A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization
BibTex
@techreport{Banholzer2022trust-56240,
  year={2022},
  series={Konstanzer Schriften in Mathematik},
  title={A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization},
  number={401},
  author={Banholzer, Stefan and Mechelli, Luca and Volkwein, Stefan},
  note={Wird erscheinen in: Mathematical and Computational Applications ; von 2022}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56240">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56240"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Banholzer, Stefan</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56240/3/Banholzer_2-1id1qy27qa8666.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Banholzer, Stefan</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56240/3/Banholzer_2-1id1qy27qa8666.pdf"/>
    <dc:creator>Mechelli, Luca</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-20T06:55:00Z</dc:date>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:title>A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-20T06:55:00Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, where the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed. Numerical examples illustrate the efficiency of the proposed solution technique.</dcterms:abstract>
    <dc:contributor>Mechelli, Luca</dc:contributor>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Wird erscheinen in: Mathematical and Computational Applications ; von 2022
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen