Publikation:

On the Scalability of Classical One-Level Domain-Decomposition Methods

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Chaouqui, Fayçal
Gander, Martin J.
Vanzan, Tommaso

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Vietnam Journal of Mathematics. 2018, 46(4), pp. 1053-1088. ISSN 2305-221X. eISSN 2305-2228. Available under: doi: 10.1007/s10013-018-0316-9

Zusammenfassung

One-level domain-decomposition methods are in general not scalable, and coarse corrections are needed to obtain scalability. It has however recently been observed in applications in computational chemistry that the classical one-level parallel Schwarz method is surprizingly scalable for the solution of one- and two-dimensional chains of fixed-sized subdomains. We first review some of these recent scalability results of the classical one-level parallel Schwarz method, and then prove similar results for other classical one-level domain-decomposition methods, namely the optimized Schwarz method, the Dirichlet–Neumann method, and the Neumann–Neumann method. We show that the scalability of one-level domain decomposition methods depends critically on the geometry of the domain-decomposition and the boundary conditions imposed on the original problem. We illustrate all our results also with numerical experiments.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Domain-decomposition methods, Scalability, Classical and optimized Schwarz methods, Dirichlet–Neumann method, Neumann–Neumann method, Solvation model, Chain of atoms, Laplace’s equation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHAOUQUI, Fayçal, Gabriele CIARAMELLA, Martin J. GANDER, Tommaso VANZAN, 2018. On the Scalability of Classical One-Level Domain-Decomposition Methods. In: Vietnam Journal of Mathematics. 2018, 46(4), pp. 1053-1088. ISSN 2305-221X. eISSN 2305-2228. Available under: doi: 10.1007/s10013-018-0316-9
BibTex
@article{Chaouqui2018-12Scala-44864,
  year={2018},
  doi={10.1007/s10013-018-0316-9},
  title={On the Scalability of Classical One-Level Domain-Decomposition Methods},
  number={4},
  volume={46},
  issn={2305-221X},
  journal={Vietnam Journal of Mathematics},
  pages={1053--1088},
  author={Chaouqui, Fayçal and Ciaramella, Gabriele and Gander, Martin J. and Vanzan, Tommaso}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44864">
    <dc:creator>Vanzan, Tommaso</dc:creator>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dc:contributor>Chaouqui, Fayçal</dc:contributor>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T14:49:26Z</dcterms:available>
    <dcterms:title>On the Scalability of Classical One-Level Domain-Decomposition Methods</dcterms:title>
    <dc:creator>Chaouqui, Fayçal</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T14:49:26Z</dc:date>
    <dcterms:issued>2018-12</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">One-level domain-decomposition methods are in general not scalable, and coarse corrections are needed to obtain scalability. It has however recently been observed in applications in computational chemistry that the classical one-level parallel Schwarz method is surprizingly scalable for the solution of one- and two-dimensional chains of fixed-sized subdomains. We first review some of these recent scalability results of the classical one-level parallel Schwarz method, and then prove similar results for other classical one-level domain-decomposition methods, namely the optimized Schwarz method, the Dirichlet–Neumann method, and the Neumann–Neumann method. We show that the scalability of one-level domain decomposition methods depends critically on the geometry of the domain-decomposition and the boundary conditions imposed on the original problem. We illustrate all our results also with numerical experiments.</dcterms:abstract>
    <dc:contributor>Vanzan, Tommaso</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44864"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Gander, Martin J.</dc:creator>
    <dc:contributor>Gander, Martin J.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen