Publikation: On the Scalability of Classical One-Level Domain-Decomposition Methods
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
One-level domain-decomposition methods are in general not scalable, and coarse corrections are needed to obtain scalability. It has however recently been observed in applications in computational chemistry that the classical one-level parallel Schwarz method is surprizingly scalable for the solution of one- and two-dimensional chains of fixed-sized subdomains. We first review some of these recent scalability results of the classical one-level parallel Schwarz method, and then prove similar results for other classical one-level domain-decomposition methods, namely the optimized Schwarz method, the Dirichlet–Neumann method, and the Neumann–Neumann method. We show that the scalability of one-level domain decomposition methods depends critically on the geometry of the domain-decomposition and the boundary conditions imposed on the original problem. We illustrate all our results also with numerical experiments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHAOUQUI, Fayçal, Gabriele CIARAMELLA, Martin J. GANDER, Tommaso VANZAN, 2018. On the Scalability of Classical One-Level Domain-Decomposition Methods. In: Vietnam Journal of Mathematics. 2018, 46(4), pp. 1053-1088. ISSN 2305-221X. eISSN 2305-2228. Available under: doi: 10.1007/s10013-018-0316-9BibTex
@article{Chaouqui2018-12Scala-44864, year={2018}, doi={10.1007/s10013-018-0316-9}, title={On the Scalability of Classical One-Level Domain-Decomposition Methods}, number={4}, volume={46}, issn={2305-221X}, journal={Vietnam Journal of Mathematics}, pages={1053--1088}, author={Chaouqui, Fayçal and Ciaramella, Gabriele and Gander, Martin J. and Vanzan, Tommaso} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44864"> <dc:creator>Vanzan, Tommaso</dc:creator> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <dc:contributor>Chaouqui, Fayçal</dc:contributor> <dc:creator>Ciaramella, Gabriele</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T14:49:26Z</dcterms:available> <dcterms:title>On the Scalability of Classical One-Level Domain-Decomposition Methods</dcterms:title> <dc:creator>Chaouqui, Fayçal</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T14:49:26Z</dc:date> <dcterms:issued>2018-12</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">One-level domain-decomposition methods are in general not scalable, and coarse corrections are needed to obtain scalability. It has however recently been observed in applications in computational chemistry that the classical one-level parallel Schwarz method is surprizingly scalable for the solution of one- and two-dimensional chains of fixed-sized subdomains. We first review some of these recent scalability results of the classical one-level parallel Schwarz method, and then prove similar results for other classical one-level domain-decomposition methods, namely the optimized Schwarz method, the Dirichlet–Neumann method, and the Neumann–Neumann method. We show that the scalability of one-level domain decomposition methods depends critically on the geometry of the domain-decomposition and the boundary conditions imposed on the original problem. We illustrate all our results also with numerical experiments.</dcterms:abstract> <dc:contributor>Vanzan, Tommaso</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44864"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Gander, Martin J.</dc:creator> <dc:contributor>Gander, Martin J.</dc:contributor> </rdf:Description> </rdf:RDF>