Publikation:

Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data

Lade...
Vorschaubild

Dateien

InfoVis98.pdf
InfoVis98.pdfGröße: 791 KBDownloads: 1092

Datum

1998

Autor:innen

Ankerst, Mihael
Berchtold, Stefan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258). IEEE Comput. Soc, 1998, pp. 52-60,. ISBN 0-8186-9093-3. Available under: doi: 10.1109/INFVIS.1998.729559

Zusammenfassung

The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal one- or two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the one- and the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE Symposium on Information Visualization, Research Triangle, CA, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ANKERST, Mihael, Stefan BERCHTOLD, Daniel A. KEIM, 1998. Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data. IEEE Symposium on Information Visualization. Research Triangle, CA, USA. In: Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258). IEEE Comput. Soc, 1998, pp. 52-60,. ISBN 0-8186-9093-3. Available under: doi: 10.1109/INFVIS.1998.729559
BibTex
@inproceedings{Ankerst1998Simil-5761,
  year={1998},
  doi={10.1109/INFVIS.1998.729559},
  title={Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data},
  isbn={0-8186-9093-3},
  publisher={IEEE Comput. Soc},
  booktitle={Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258)},
  pages={52--60,},
  author={Ankerst, Mihael and Berchtold, Stefan and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5761">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data</dcterms:title>
    <dc:contributor>Berchtold, Stefan</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Ankerst, Mihael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5761/1/InfoVis98.pdf"/>
    <dcterms:abstract xml:lang="eng">The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal one- or two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the one- and the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5761/1/InfoVis98.pdf"/>
    <dc:creator>Berchtold, Stefan</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5761"/>
    <dc:format>application/pdf</dc:format>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the International Conference on Information Visualization '98 (INFOVIS'98), Research Triangle Park, NC, September, 1998, pp. 52-60</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>1998</dcterms:issued>
    <dc:contributor>Ankerst, Mihael</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen