Publikation: Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal one- or two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the one- and the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ANKERST, Mihael, Stefan BERCHTOLD, Daniel A. KEIM, 1998. Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data. IEEE Symposium on Information Visualization. Research Triangle, CA, USA. In: Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258). IEEE Comput. Soc, 1998, pp. 52-60,. ISBN 0-8186-9093-3. Available under: doi: 10.1109/INFVIS.1998.729559BibTex
@inproceedings{Ankerst1998Simil-5761, year={1998}, doi={10.1109/INFVIS.1998.729559}, title={Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data}, isbn={0-8186-9093-3}, publisher={IEEE Comput. Soc}, booktitle={Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258)}, pages={52--60,}, author={Ankerst, Mihael and Berchtold, Stefan and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5761"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data</dcterms:title> <dc:contributor>Berchtold, Stefan</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Ankerst, Mihael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5761/1/InfoVis98.pdf"/> <dcterms:abstract xml:lang="eng">The order and arrangement of dimensions (variates) is crucial for the effectiveness of a large number of visualization techniques such as parallel coordinates, scatterplots, recursive pattern, and many others. In this paper, we describe a systematic approach to arrange the dimensions according to their similarity. The basic idea is to rearrange the data dimensions such that dimensions showing a similar behavior are positioned next to each other. For the similarity clustering of dimensions we need to define similarity measures which determine the partial or global similarity of dimensions. We then consider the problem of finding an optimal one- or two-dimensional arrangement of the dimensions based on their similarity. Theoretical considerations show that both, the one- and the two-dimensional arrangement problem are surprisingly hard problems, i.e. they are NPcomplete. Our solution of the problem is therefore based on heuristic algorithms. An empirical evaluation using a number of different visualization techniques shows the high impact of our similarity clustering of dimensions on the visualization results.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5761/1/InfoVis98.pdf"/> <dc:creator>Berchtold, Stefan</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5761"/> <dc:format>application/pdf</dc:format> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. in: Proceedings of the International Conference on Information Visualization '98 (INFOVIS'98), Research Triangle Park, NC, September, 1998, pp. 52-60</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:53Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>1998</dcterms:issued> <dc:contributor>Ankerst, Mihael</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> </rdf:Description> </rdf:RDF>