Publikation:

Addendum to "Connes' embedding conjecture and sums of Hermitian squares" [Adv. Math. 217 (4) (2008) 1816-1837]

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Mathematics. 2014, 252, pp. 805-811. ISSN 0001-8708. eISSN 1090-2082. Available under: doi: 10.1016/j.aim.2013.10.020

Zusammenfassung

We show that Connesʼ embedding conjecture (CEC) is equivalent to a real version of the same (RCEC). Moreover, we show that RCEC is equivalent to a real, purely algebraic statement concerning trace positive polynomials. This purely algebraic reformulation of CEC had previously been given in both a real and a complex version in a paper of the last two authors. The second author discovered a gap in this earlier proof of the equivalence of CEC to the real algebraic reformulation (the proof of the complex algebraic reformulation being correct). In this note, we show that this gap can be filled with help of the theory of real von Neumann algebras.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Connesʼ embedding problem, Real von Neumann algebras

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BURGDORF, Sabine, Ken DYKEMA, Igor KLEP, Markus SCHWEIGHOFER, 2014. Addendum to "Connes' embedding conjecture and sums of Hermitian squares" [Adv. Math. 217 (4) (2008) 1816-1837]. In: Advances in Mathematics. 2014, 252, pp. 805-811. ISSN 0001-8708. eISSN 1090-2082. Available under: doi: 10.1016/j.aim.2013.10.020
BibTex
@article{Burgdorf2014Adden-25764,
  year={2014},
  doi={10.1016/j.aim.2013.10.020},
  title={Addendum to "Connes' embedding conjecture and sums of Hermitian squares" [Adv. Math. 217 (4) (2008) 1816-1837]},
  volume={252},
  issn={0001-8708},
  journal={Advances in Mathematics},
  pages={805--811},
  author={Burgdorf, Sabine and Dykema, Ken and Klep, Igor and Schweighofer, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25764">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25764"/>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We show that Connesʼ embedding conjecture (CEC) is equivalent to a real version of the same (RCEC). Moreover, we show that RCEC is equivalent to a real, purely algebraic statement concerning trace positive polynomials. This purely algebraic reformulation of CEC had previously been given in both a real and a complex version in a paper of the last two authors. The second author discovered a gap in this earlier proof of the equivalence of CEC to the real algebraic reformulation (the proof of the complex algebraic reformulation being correct). In this note, we show that this gap can be filled with help of the theory of real von Neumann algebras.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dcterms:title>Addendum to "Connes' embedding conjecture and sums of Hermitian squares" [Adv. Math. 217 (4) (2008) 1816-1837]</dcterms:title>
    <dc:contributor>Burgdorf, Sabine</dc:contributor>
    <dcterms:bibliographicCitation>Advances in Mathematics ; 252 (2014). - S. 805-811</dcterms:bibliographicCitation>
    <dc:creator>Klep, Igor</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T10:40:51Z</dc:date>
    <dc:creator>Dykema, Ken</dc:creator>
    <dc:creator>Burgdorf, Sabine</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T10:40:51Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <dc:contributor>Dykema, Ken</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen