Publikation: Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 952159
European Union (EU): 952103
European Union (EU): 826494
European Union (EU): 952172
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHOUVARDA, Ioanna, Sara COLANTONIO, Ana S. C. VERDE, Ana JIMENEZ-PASTOR, Leonor CERDÁ-ALBERICH, Yannick METZ, Lithin ZACHARIAS, Shereen NABHANI-GEBARA, Maciej BOBOWICZ, Gianna TSAKOU, 2025. Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!. In: European Radiology Experimental. Springer. 2025, 9, 7. eISSN 2509-9280. Verfügbar unter: doi: 10.1186/s41747-024-00543-0BibTex
@article{Chouvarda2025-01-15Diffe-72750, title={Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!}, year={2025}, doi={10.1186/s41747-024-00543-0}, volume={9}, journal={European Radiology Experimental}, author={Chouvarda, Ioanna and Colantonio, Sara and Verde, Ana S. C. and Jimenez-Pastor, Ana and Cerdá-Alberich, Leonor and Metz, Yannick and Zacharias, Lithin and Nabhani-Gebara, Shereen and Bobowicz, Maciej and Tsakou, Gianna}, note={Article Number: 7} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72750"> <dc:contributor>Chouvarda, Ioanna</dc:contributor> <dcterms:issued>2025-01-15</dcterms:issued> <dcterms:abstract>Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation.</dcterms:abstract> <dc:contributor>Jimenez-Pastor, Ana</dc:contributor> <dc:contributor>Zacharias, Lithin</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Bobowicz, Maciej</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72750/1/Chouvarda_2-1jaeulcmc8j9m7.pdf"/> <dc:contributor>Cerdá-Alberich, Leonor</dc:contributor> <dc:creator>Metz, Yannick</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Colantonio, Sara</dc:contributor> <dc:contributor>Tsakou, Gianna</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72750"/> <dc:creator>Cerdá-Alberich, Leonor</dc:creator> <dc:creator>Bobowicz, Maciej</dc:creator> <dc:creator>Chouvarda, Ioanna</dc:creator> <dc:creator>Tsakou, Gianna</dc:creator> <dc:creator>Verde, Ana S. C.</dc:creator> <dcterms:title>Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!</dcterms:title> <dc:creator>Colantonio, Sara</dc:creator> <dc:contributor>Verde, Ana S. C.</dc:contributor> <dc:contributor>Metz, Yannick</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-19T13:29:44Z</dc:date> <dc:contributor>Nabhani-Gebara, Shereen</dc:contributor> <dc:creator>Jimenez-Pastor, Ana</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72750/1/Chouvarda_2-1jaeulcmc8j9m7.pdf"/> <dc:creator>Nabhani-Gebara, Shereen</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Zacharias, Lithin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-19T13:29:44Z</dcterms:available> </rdf:Description> </rdf:RDF>