Publikation:

Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!

Lade...
Vorschaubild

Dateien

Chouvarda_2-1jaeulcmc8j9m7.pdf
Chouvarda_2-1jaeulcmc8j9m7.pdfGröße: 1.74 MBDownloads: 12

Datum

2025

Autor:innen

Chouvarda, Ioanna
Colantonio, Sara
Verde, Ana S. C.
Jimenez-Pastor, Ana
Cerdá-Alberich, Leonor
Zacharias, Lithin
Nabhani-Gebara, Shereen
Bobowicz, Maciej
Tsakou, Gianna
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 952179
European Union (EU): 952159
European Union (EU): 952103
European Union (EU): 826494
European Union (EU): 952172

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

European Radiology Experimental. Springer. 2025, 9, 7. eISSN 2509-9280. Verfügbar unter: doi: 10.1186/s41747-024-00543-0

Zusammenfassung

Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Artificial intelligence, Diagnostic imaging, Neoplasms, Research design, Surveys and questionnaires

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHOUVARDA, Ioanna, Sara COLANTONIO, Ana S. C. VERDE, Ana JIMENEZ-PASTOR, Leonor CERDÁ-ALBERICH, Yannick METZ, Lithin ZACHARIAS, Shereen NABHANI-GEBARA, Maciej BOBOWICZ, Gianna TSAKOU, 2025. Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!. In: European Radiology Experimental. Springer. 2025, 9, 7. eISSN 2509-9280. Verfügbar unter: doi: 10.1186/s41747-024-00543-0
BibTex
@article{Chouvarda2025-01-15Diffe-72750,
  title={Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!},
  year={2025},
  doi={10.1186/s41747-024-00543-0},
  volume={9},
  journal={European Radiology Experimental},
  author={Chouvarda, Ioanna and Colantonio, Sara and Verde, Ana S. C. and Jimenez-Pastor, Ana and Cerdá-Alberich, Leonor and Metz, Yannick and Zacharias, Lithin and Nabhani-Gebara, Shereen and Bobowicz, Maciej and Tsakou, Gianna},
  note={Article Number: 7}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72750">
    <dc:contributor>Chouvarda, Ioanna</dc:contributor>
    <dcterms:issued>2025-01-15</dcterms:issued>
    <dcterms:abstract>Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation.</dcterms:abstract>
    <dc:contributor>Jimenez-Pastor, Ana</dc:contributor>
    <dc:contributor>Zacharias, Lithin</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Bobowicz, Maciej</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72750/1/Chouvarda_2-1jaeulcmc8j9m7.pdf"/>
    <dc:contributor>Cerdá-Alberich, Leonor</dc:contributor>
    <dc:creator>Metz, Yannick</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Colantonio, Sara</dc:contributor>
    <dc:contributor>Tsakou, Gianna</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72750"/>
    <dc:creator>Cerdá-Alberich, Leonor</dc:creator>
    <dc:creator>Bobowicz, Maciej</dc:creator>
    <dc:creator>Chouvarda, Ioanna</dc:creator>
    <dc:creator>Tsakou, Gianna</dc:creator>
    <dc:creator>Verde, Ana S. C.</dc:creator>
    <dcterms:title>Differences in technical and clinical perspectives on AI validation in cancer imaging : mind the gap!</dcterms:title>
    <dc:creator>Colantonio, Sara</dc:creator>
    <dc:contributor>Verde, Ana S. C.</dc:contributor>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-19T13:29:44Z</dc:date>
    <dc:contributor>Nabhani-Gebara, Shereen</dc:contributor>
    <dc:creator>Jimenez-Pastor, Ana</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72750/1/Chouvarda_2-1jaeulcmc8j9m7.pdf"/>
    <dc:creator>Nabhani-Gebara, Shereen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:creator>Zacharias, Lithin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-19T13:29:44Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen