Publikation: Fourier series of atomic radial distribution functions : A molecular fingerprint for machine learning models of quantum chemical properties
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation, rotation, and nuclear permutation, and requires no preconceived knowledge about chemical bonding, topology, or electronic orbitals. As such, it meets many important criteria for a good molecular representation, suggesting its usefulness for machine learning models of molecular properties trained across chemical compound space. To assess the performance of this new descriptor, we have trained machine learning models of molecular enthalpies of atomization for training sets with up to 10 k organic molecules, drawn at random from a published set of 134 k organic molecules with an average atomization enthalpy of over 1770 kcal/mol. We validate the descriptor on all remaining molecules of the 134 k set. For a training set of 10 k molecules, the fingerprint descriptor achieves a mean absolute error of 8.0 kcal/mol. This is slightly worse than the performance attained using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training and test sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VON LILIENFELD, O. Anatole, Raghunathan RAMAKRISHNAN, Matthias RUPP, Aaron KNOLL, 2015. Fourier series of atomic radial distribution functions : A molecular fingerprint for machine learning models of quantum chemical properties. In: International Journal of Quantum Chemistry. Wiley-Blackwell. 2015, 115(16), pp. 1084-1093. ISSN 0020-7608. eISSN 1097-461X. Available under: doi: 10.1002/qua.24912BibTex
@article{vonLilienfeld2015Fouri-52106, year={2015}, doi={10.1002/qua.24912}, title={Fourier series of atomic radial distribution functions : A molecular fingerprint for machine learning models of quantum chemical properties}, number={16}, volume={115}, issn={0020-7608}, journal={International Journal of Quantum Chemistry}, pages={1084--1093}, author={von Lilienfeld, O. Anatole and Ramakrishnan, Raghunathan and Rupp, Matthias and Knoll, Aaron} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52106"> <dc:rights>terms-of-use</dc:rights> <dc:creator>Ramakrishnan, Raghunathan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Ramakrishnan, Raghunathan</dc:contributor> <dc:creator>von Lilienfeld, O. Anatole</dc:creator> <dc:contributor>Knoll, Aaron</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-14T13:54:31Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-14T13:54:31Z</dc:date> <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor> <dc:creator>Rupp, Matthias</dc:creator> <dcterms:title>Fourier series of atomic radial distribution functions : A molecular fingerprint for machine learning models of quantum chemical properties</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52106"/> <dc:creator>Knoll, Aaron</dc:creator> <dcterms:abstract xml:lang="eng">We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation, rotation, and nuclear permutation, and requires no preconceived knowledge about chemical bonding, topology, or electronic orbitals. As such, it meets many important criteria for a good molecular representation, suggesting its usefulness for machine learning models of molecular properties trained across chemical compound space. To assess the performance of this new descriptor, we have trained machine learning models of molecular enthalpies of atomization for training sets with up to 10 k organic molecules, drawn at random from a published set of 134 k organic molecules with an average atomization enthalpy of over 1770 kcal/mol. We validate the descriptor on all remaining molecules of the 134 k set. For a training set of 10 k molecules, the fingerprint descriptor achieves a mean absolute error of 8.0 kcal/mol. This is slightly worse than the performance attained using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training and test sets.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>