Publikation:

High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems

Lade...
Vorschaubild

Dateien

Francisco_2-1jh064zjnuqjy6.pdf
Francisco_2-1jh064zjnuqjy6.pdfGröße: 1.7 MBDownloads: 278

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Movement Ecology. BioMed Central. 2020, 8, 27. eISSN 2051-3933. Available under: doi: 10.1186/s40462-020-00214-w

Zusammenfassung

Background
Acquiring high resolution quantitative behavioural data underwater often involves installation of costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in taxonomic range and ecological coverage.

Methods
Here we present a novel deep-learning based, multi-individual tracking approach, which incorporates Structure-from-Motion in order to determine the 3D location, body position and the visual environment of every recorded individual. The application is based on low-cost cameras and does not require the animals to be confined, manipulated, or handled in any way.

Results
Using this approach, single individuals, small heterospecific groups and schools of fish were tracked in freshwater and marine environments of varying complexity. Positional tracking errors as low as 1.09 ± 0.47 cm (RSME) in underwater areas up to 500 m2 were recorded.

Conclusions
This cost-effective and open-source framework allows the analysis of animal behaviour in aquatic systems at an unprecedented resolution. Implementing this versatile approach, quantitative behavioural analysis can be employed in a wide range of natural contexts, vastly expanding our potential for examining non-model systems and species.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FRANCISCO, Fritz A., Paul NÜHRENBERG, Alex JORDAN, 2020. High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems. In: Movement Ecology. BioMed Central. 2020, 8, 27. eISSN 2051-3933. Available under: doi: 10.1186/s40462-020-00214-w
BibTex
@article{Francisco2020Highr-50032,
  year={2020},
  doi={10.1186/s40462-020-00214-w},
  title={High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems},
  volume={8},
  journal={Movement Ecology},
  author={Francisco, Fritz A. and Nührenberg, Paul and Jordan, Alex},
  note={Article Number: 27}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50032">
    <dcterms:issued>2020</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-29T11:16:46Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Francisco, Fritz A.</dc:contributor>
    <dc:contributor>Nührenberg, Paul</dc:contributor>
    <dcterms:abstract xml:lang="eng">Background&lt;br /&gt;Acquiring high resolution quantitative behavioural data underwater often involves installation of costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in taxonomic range and ecological coverage.&lt;br /&gt;&lt;br /&gt;Methods&lt;br /&gt;Here we present a novel deep-learning based, multi-individual tracking approach, which incorporates Structure-from-Motion in order to determine the 3D location, body position and the visual environment of every recorded individual. The application is based on low-cost cameras and does not require the animals to be confined, manipulated, or handled in any way.&lt;br /&gt;&lt;br /&gt;Results&lt;br /&gt;Using this approach, single individuals, small heterospecific groups and schools of fish were tracked in freshwater and marine environments of varying complexity. Positional tracking errors as low as 1.09 ± 0.47 cm (RSME) in underwater areas up to 500 m2 were recorded.&lt;br /&gt;&lt;br /&gt;Conclusions&lt;br /&gt;This cost-effective and open-source framework allows the analysis of animal behaviour in aquatic systems at an unprecedented resolution. Implementing this versatile approach, quantitative behavioural analysis can be employed in a wide range of natural contexts, vastly expanding our potential for examining non-model systems and species.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-29T11:16:46Z</dcterms:available>
    <dc:contributor>Jordan, Alex</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Francisco, Fritz A.</dc:creator>
    <dc:creator>Nührenberg, Paul</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50032"/>
    <dcterms:title>High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems</dcterms:title>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50032/1/Francisco_2-1jh064zjnuqjy6.pdf"/>
    <dc:language>eng</dc:language>
    <dc:creator>Jordan, Alex</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50032/1/Francisco_2-1jh064zjnuqjy6.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen