High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background
Acquiring high resolution quantitative behavioural data underwater often involves installation of costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in taxonomic range and ecological coverage.
Methods
Here we present a novel deep-learning based, multi-individual tracking approach, which incorporates Structure-from-Motion in order to determine the 3D location, body position and the visual environment of every recorded individual. The application is based on low-cost cameras and does not require the animals to be confined, manipulated, or handled in any way.
Results
Using this approach, single individuals, small heterospecific groups and schools of fish were tracked in freshwater and marine environments of varying complexity. Positional tracking errors as low as 1.09 ± 0.47 cm (RSME) in underwater areas up to 500 m2 were recorded.
Conclusions
This cost-effective and open-source framework allows the analysis of animal behaviour in aquatic systems at an unprecedented resolution. Implementing this versatile approach, quantitative behavioural analysis can be employed in a wide range of natural contexts, vastly expanding our potential for examining non-model systems and species.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FRANCISCO, Fritz A., Paul NÜHRENBERG, Alex JORDAN, 2020. High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems. In: Movement Ecology. BioMed Central. 2020, 8, 27. eISSN 2051-3933. Available under: doi: 10.1186/s40462-020-00214-wBibTex
@article{Francisco2020Highr-50032, year={2020}, doi={10.1186/s40462-020-00214-w}, title={High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems}, volume={8}, journal={Movement Ecology}, author={Francisco, Fritz A. and Nührenberg, Paul and Jordan, Alex}, note={Article Number: 27} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50032"> <dcterms:issued>2020</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-29T11:16:46Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Francisco, Fritz A.</dc:contributor> <dc:contributor>Nührenberg, Paul</dc:contributor> <dcterms:abstract xml:lang="eng">Background<br />Acquiring high resolution quantitative behavioural data underwater often involves installation of costly infrastructure, or capture and manipulation of animals. Aquatic movement ecology can therefore be limited in taxonomic range and ecological coverage.<br /><br />Methods<br />Here we present a novel deep-learning based, multi-individual tracking approach, which incorporates Structure-from-Motion in order to determine the 3D location, body position and the visual environment of every recorded individual. The application is based on low-cost cameras and does not require the animals to be confined, manipulated, or handled in any way.<br /><br />Results<br />Using this approach, single individuals, small heterospecific groups and schools of fish were tracked in freshwater and marine environments of varying complexity. Positional tracking errors as low as 1.09 ± 0.47 cm (RSME) in underwater areas up to 500 m2 were recorded.<br /><br />Conclusions<br />This cost-effective and open-source framework allows the analysis of animal behaviour in aquatic systems at an unprecedented resolution. Implementing this versatile approach, quantitative behavioural analysis can be employed in a wide range of natural contexts, vastly expanding our potential for examining non-model systems and species.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-29T11:16:46Z</dcterms:available> <dc:contributor>Jordan, Alex</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Francisco, Fritz A.</dc:creator> <dc:creator>Nührenberg, Paul</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50032"/> <dcterms:title>High-resolution, non-invasive animal tracking and reconstruction of local environment in aquatic ecosystems</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50032/1/Francisco_2-1jh064zjnuqjy6.pdf"/> <dc:language>eng</dc:language> <dc:creator>Jordan, Alex</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50032/1/Francisco_2-1jh064zjnuqjy6.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>