Publikation: Introducing Total Curvature for Image Processing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce the novel continuous regularizer total curvature (TC) for images u: Ω → ℝ. It is defined as the Menger-Melnikov curvature of the Radon measure |Du|, which can be understood as a measure theoretic formulation of curvature mathematically related to mean curvature. The functional is not convex, therefore we define a convex relaxation which yields a close approximation. Similar to the total variation, the relaxation can be written as the support functional of a convex set, which means that there are stable and efficient minimization algorithms available when it is used as a regularizer in image processing problems. Our current implementation can handle general inverse problems, inpainting and segmentation. We demonstrate in experiments and comparisons how the regularizer performs in practice.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GOLDLÜCKE, Bastian, Daniel CREMERS, 2011. Introducing Total Curvature for Image Processing. IEE International Conference on Computer Vision. Barcelona, 6. Nov. 2011 - 13. Nov. 2011. In: IEEE International Conference on Computer Vision (ICCV), 2011 : 6 - 13 Nov. 2011, Barcelona, Spain. Piscataway: IEEE, 2011, pp. 1267-1274. ISBN 978-1-4577-1101-5. Available under: doi: 10.1109/ICCV.2011.6126378BibTex
@inproceedings{Goldlucke2011Intro-29092, year={2011}, doi={10.1109/ICCV.2011.6126378}, title={Introducing Total Curvature for Image Processing}, isbn={978-1-4577-1101-5}, publisher={IEEE}, address={Piscataway}, booktitle={IEEE International Conference on Computer Vision (ICCV), 2011 : 6 - 13 Nov. 2011, Barcelona, Spain}, pages={1267--1274}, author={Goldlücke, Bastian and Cremers, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29092"> <dc:creator>Goldlücke, Bastian</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Cremers, Daniel</dc:contributor> <dcterms:issued>2011</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Introducing Total Curvature for Image Processing</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:16:35Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29092"/> <dc:creator>Cremers, Daniel</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:16:35Z</dc:date> <dcterms:abstract xml:lang="eng">We introduce the novel continuous regularizer total curvature (TC) for images u: Ω → ℝ. It is defined as the Menger-Melnikov curvature of the Radon measure |Du|, which can be understood as a measure theoretic formulation of curvature mathematically related to mean curvature. The functional is not convex, therefore we define a convex relaxation which yields a close approximation. Similar to the total variation, the relaxation can be written as the support functional of a convex set, which means that there are stable and efficient minimization algorithms available when it is used as a regularizer in image processing problems. Our current implementation can handle general inverse problems, inpainting and segmentation. We demonstrate in experiments and comparisons how the regularizer performs in practice.</dcterms:abstract> </rdf:Description> </rdf:RDF>