Publikation:

On the stability of Mindlin-Timoshenko plates

Lade...
Vorschaubild

Dateien

Tmkbeam.pdf
Tmkbeam.pdfGröße: 415.87 KBDownloads: 328

Datum

2007

Autor:innen

Fernández Sare, Hugo D.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We consider a Mindlin-Timoshenko model with frictional dissipations acting on the equations for the rotation angles. We prove that this system is not exponentially stable independent of any relations between the constants of the system, which is different from the analogous' one-dimensional case. Moreover, we show that the solution decays polynomially to zero, with rates that can be improved depending on the regularity of the initial data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FERNÁNDEZ SARE, Hugo D., 2007. On the stability of Mindlin-Timoshenko plates
BibTex
@techreport{FernandezSare2007stabi-550,
  year={2007},
  series={Konstanzer Schriften in Mathematik und Informatik},
  title={On the stability of Mindlin-Timoshenko plates},
  number={237},
  author={Fernández Sare, Hugo D.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/550">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/550"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/550/1/Tmkbeam.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Fernández Sare, Hugo D.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>On the stability of Mindlin-Timoshenko plates</dcterms:title>
    <dcterms:issued>2007</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We consider a Mindlin-Timoshenko model with frictional dissipations acting on the equations for the rotation angles. We prove that this system is not exponentially stable independent of any relations between the constants of the system, which is different from the analogous' one-dimensional case. Moreover, we show that the solution decays polynomially to zero, with rates that can be improved depending on the regularity of the initial data.</dcterms:abstract>
    <dc:contributor>Fernández Sare, Hugo D.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/550/1/Tmkbeam.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:01Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:01Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen