Publikation:

Diversity in swarm robotics with task-independent behavior characterization

Lade...
Vorschaubild

Dateien

Kaiser_2-1jolk49m2168t8.pdf
Kaiser_2-1jolk49m2168t8.pdfGröße: 99.27 KBDownloads: 15

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

COELLO COELLO, Carlos Artemio, ed.. GECCO '20 : Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2020, pp. 83-84. ISBN 978-1-4503-7127-8. Available under: doi: 10.1145/3377929.3389949

Zusammenfassung

Evolutionary computation provides methods to automatically generate controllers for swarm robotics. Many approaches rely on optimization and the targeted behavior is quantified in form of a fitness function. Other methods, like novelty search, increase exploration by putting selective pressure on unexplored behavior space using a domain-specific behavioral distance function. In contrast, minimize surprise leads to the emergence of diverse behaviors by using an intrinsic motivation as fitness, that is, high prediction accuracy. We compare a standard genetic algorithm, novelty search and minimize surprise in a swarm robotics setting to evolve diverse behaviors and show that minimize surprise is competitive to novelty search.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

behavioral diversity, evolutionary robotics, swarm robotics

Konferenz

GECCO '20 : Genetic and Evolutionary Computation Conference, 8. Juli 2020 - 12. Juli 2020, Cancún, Mexico
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAISER, Tanja Katharina, Heiko HAMANN, 2020. Diversity in swarm robotics with task-independent behavior characterization. GECCO '20 : Genetic and Evolutionary Computation Conference. Cancún, Mexico, 8. Juli 2020 - 12. Juli 2020. In: COELLO COELLO, Carlos Artemio, ed.. GECCO '20 : Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2020, pp. 83-84. ISBN 978-1-4503-7127-8. Available under: doi: 10.1145/3377929.3389949
BibTex
@inproceedings{Kaiser2020Diver-59736,
  year={2020},
  doi={10.1145/3377929.3389949},
  title={Diversity in swarm robotics with task-independent behavior characterization},
  isbn={978-1-4503-7127-8},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO '20 : Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion},
  pages={83--84},
  editor={Coello Coello, Carlos Artemio},
  author={Kaiser, Tanja Katharina and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59736">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59736/1/Kaiser_2-1jolk49m2168t8.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:28:53Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Evolutionary computation provides methods to automatically generate controllers for swarm robotics. Many approaches rely on optimization and the targeted behavior is quantified in form of a fitness function. Other methods, like novelty search, increase exploration by putting selective pressure on unexplored behavior space using a domain-specific behavioral distance function. In contrast, minimize surprise leads to the emergence of diverse behaviors by using an intrinsic motivation as fitness, that is, high prediction accuracy. We compare a standard genetic algorithm, novelty search and minimize surprise in a swarm robotics setting to evolve diverse behaviors and show that minimize surprise is competitive to novelty search.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59736/1/Kaiser_2-1jolk49m2168t8.pdf"/>
    <dc:contributor>Kaiser, Tanja Katharina</dc:contributor>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59736"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:28:53Z</dcterms:available>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Diversity in swarm robotics with task-independent behavior characterization</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kaiser, Tanja Katharina</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen