Publikation:

Feature-Based Visual Exploration of Text Classification

Lade...
Vorschaubild

Dateien

Stoffel_2-1jr783gumb4b90.pdf
Stoffel_2-1jr783gumb4b90.pdfGröße: 1.17 MBDownloads: 142

Datum

2015

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015. 2015

Zusammenfassung

There are many applications of text classification such as gender attribution in market research or the identification of forged product reviews on e-commerce sites. Although several automatic methods provide satisfying performance in most application cases, we see a gap in supporting the analyst to understand the results and derive knowledge for future application scenarios. In this paper, we present a visualization driven application that allows analysts to gain insight in text classification tasks such as sentiment detection or authorship attribution on feature level, built with a practitioner’s way of reasoning in mind, the Text Classification Analysis Process.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015, 26. Okt. 2015, Chicago, Illinois
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STOFFEL, Florian, Lucie FLEKOVA, Daniela OELKE, Iryna GUREVYCH, Daniel A. KEIM, 2015. Feature-Based Visual Exploration of Text Classification. Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015. Chicago, Illinois, 26. Okt. 2015. In: Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015. 2015
BibTex
@inproceedings{Stoffel2015Featu-45096,
  year={2015},
  title={Feature-Based Visual Exploration of Text Classification},
  url={https://scibib.dbvis.de/publications/view/634},
  booktitle={Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015},
  author={Stoffel, Florian and Flekova, Lucie and Oelke, Daniela and Gurevych, Iryna and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45096">
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T12:16:44Z</dcterms:available>
    <dc:creator>Flekova, Lucie</dc:creator>
    <dc:contributor>Gurevych, Iryna</dc:contributor>
    <dc:contributor>Oelke, Daniela</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Gurevych, Iryna</dc:creator>
    <dcterms:title>Feature-Based Visual Exploration of Text Classification</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2015</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45096"/>
    <dc:contributor>Flekova, Lucie</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T12:16:44Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">There are many applications of text classification such as gender attribution in market research or the identification of forged product reviews on e-commerce sites. Although several automatic methods provide satisfying performance in most application cases, we see a gap in supporting the analyst to understand the results and derive knowledge for future application scenarios. In this paper, we present a visualization driven application that allows analysts to gain insight in text classification tasks such as sentiment detection or authorship attribution on feature level, built with a practitioner’s way of reasoning in mind, the Text Classification Analysis Process.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45096/1/Stoffel_2-1jr783gumb4b90.pdf"/>
    <dc:creator>Oelke, Daniela</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45096/1/Stoffel_2-1jr783gumb4b90.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-02-19

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen