Publikation: Feature-Based Visual Exploration of Text Classification
Lade...
Dateien
Datum
2015
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015. 2015
Zusammenfassung
There are many applications of text classification such as gender attribution in market research or the identification of forged product reviews on e-commerce sites. Although several automatic methods provide satisfying performance in most application cases, we see a gap in supporting the analyst to understand the results and derive knowledge for future application scenarios. In this paper, we present a visualization driven application that allows analysts to gain insight in text classification tasks such as sentiment detection or authorship attribution on feature level, built with a practitioner’s way of reasoning in mind, the Text Classification Analysis Process.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015, 26. Okt. 2015, Chicago, Illinois
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
STOFFEL, Florian, Lucie FLEKOVA, Daniela OELKE, Iryna GUREVYCH, Daniel A. KEIM, 2015. Feature-Based Visual Exploration of Text Classification. Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015. Chicago, Illinois, 26. Okt. 2015. In: Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015. 2015BibTex
@inproceedings{Stoffel2015Featu-45096, year={2015}, title={Feature-Based Visual Exploration of Text Classification}, url={https://scibib.dbvis.de/publications/view/634}, booktitle={Symposium on Visualization in Data Science (VDS) at IEEE VIS 2015}, author={Stoffel, Florian and Flekova, Lucie and Oelke, Daniela and Gurevych, Iryna and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45096"> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T12:16:44Z</dcterms:available> <dc:creator>Flekova, Lucie</dc:creator> <dc:contributor>Gurevych, Iryna</dc:contributor> <dc:contributor>Oelke, Daniela</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Gurevych, Iryna</dc:creator> <dcterms:title>Feature-Based Visual Exploration of Text Classification</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45096"/> <dc:contributor>Flekova, Lucie</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Stoffel, Florian</dc:creator> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T12:16:44Z</dc:date> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">There are many applications of text classification such as gender attribution in market research or the identification of forged product reviews on e-commerce sites. Although several automatic methods provide satisfying performance in most application cases, we see a gap in supporting the analyst to understand the results and derive knowledge for future application scenarios. In this paper, we present a visualization driven application that allows analysts to gain insight in text classification tasks such as sentiment detection or authorship attribution on feature level, built with a practitioner’s way of reasoning in mind, the Text Classification Analysis Process.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45096/1/Stoffel_2-1jr783gumb4b90.pdf"/> <dc:creator>Oelke, Daniela</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45096/1/Stoffel_2-1jr783gumb4b90.pdf"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL der Originalveröffentl.
Prüfdatum der URL
2019-02-19
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja