Publikation: A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The presence of weak instruments is translated into a nearly singular problem in a control function representation. Therefore, the L2-norm type of regularization is proposed to implement the 2SLS estimation for addressing the weak instrument problem. The L2-norm regularization with a regularized parameter O(n) allows us to obtain the Rothenberg (1984) type of higher-order approximation of the 2SLS estimator in the weak instrument asymptotic framework. The proposed regularized parameter yields the regularized concentration parameter O(n), which is used as a standardized factor in the higher-order approximation. We also show that the proposed L2-norm regularization consequently reduces the finite sample bias. A number of existing estimators that address finite sample bias in the presence of weak instruments, especially Fuller's limited information maximum likelihood estimator, are compared with our proposed estimator in a simple Monte Carlo exercise.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KIM, Namhyun, Winfried POHLMEIER, 2016. A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments. In: Oxford Bulletin of Economics and Statistics. 2016, 78(6), pp. 915-924. ISSN 0305-9049. eISSN 1468-0084. Available under: doi: 10.1111/obes.12144BibTex
@article{Kim2016-07-23Regul-36281,
year={2016},
doi={10.1111/obes.12144},
title={A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments},
number={6},
volume={78},
issn={0305-9049},
journal={Oxford Bulletin of Economics and Statistics},
pages={915--924},
author={Kim, Namhyun and Pohlmeier, Winfried}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36281">
<dc:contributor>Pohlmeier, Winfried</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
<dcterms:title>A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments</dcterms:title>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36281"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
<dc:contributor>Kim, Namhyun</dc:contributor>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-13T12:29:06Z</dcterms:available>
<dc:creator>Pohlmeier, Winfried</dc:creator>
<dcterms:abstract xml:lang="eng">The presence of weak instruments is translated into a nearly singular problem in a control function representation. Therefore, the L<sub>2</sub>-norm type of regularization is proposed to implement the 2SLS estimation for addressing the weak instrument problem. The L<sub>2</sub>-norm regularization with a regularized parameter O(n) allows us to obtain the Rothenberg (1984) type of higher-order approximation of the 2SLS estimator in the weak instrument asymptotic framework. The proposed regularized parameter yields the regularized concentration parameter O(n), which is used as a standardized factor in the higher-order approximation. We also show that the proposed L<sub>2</sub>-norm regularization consequently reduces the finite sample bias. A number of existing estimators that address finite sample bias in the presence of weak instruments, especially Fuller's limited information maximum likelihood estimator, are compared with our proposed estimator in a simple Monte Carlo exercise.</dcterms:abstract>
<dc:creator>Kim, Namhyun</dc:creator>
<dcterms:issued>2016-07-23</dcterms:issued>
<dc:language>eng</dc:language>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-13T12:29:06Z</dc:date>
</rdf:Description>
</rdf:RDF>