Publikation: A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The presence of weak instruments is translated into a nearly singular problem in a control function representation. Therefore, the L2-norm type of regularization is proposed to implement the 2SLS estimation for addressing the weak instrument problem. The L2-norm regularization with a regularized parameter O(n) allows us to obtain the Rothenberg (1984) type of higher-order approximation of the 2SLS estimator in the weak instrument asymptotic framework. The proposed regularized parameter yields the regularized concentration parameter O(n), which is used as a standardized factor in the higher-order approximation. We also show that the proposed L2-norm regularization consequently reduces the finite sample bias. A number of existing estimators that address finite sample bias in the presence of weak instruments, especially Fuller's limited information maximum likelihood estimator, are compared with our proposed estimator in a simple Monte Carlo exercise.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KIM, Namhyun, Winfried POHLMEIER, 2016. A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments. In: Oxford Bulletin of Economics and Statistics. 2016, 78(6), pp. 915-924. ISSN 0305-9049. eISSN 1468-0084. Available under: doi: 10.1111/obes.12144BibTex
@article{Kim2016-07-23Regul-36281, year={2016}, doi={10.1111/obes.12144}, title={A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments}, number={6}, volume={78}, issn={0305-9049}, journal={Oxford Bulletin of Economics and Statistics}, pages={915--924}, author={Kim, Namhyun and Pohlmeier, Winfried} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36281"> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:title>A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36281"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:contributor>Kim, Namhyun</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-13T12:29:06Z</dcterms:available> <dc:creator>Pohlmeier, Winfried</dc:creator> <dcterms:abstract xml:lang="eng">The presence of weak instruments is translated into a nearly singular problem in a control function representation. Therefore, the L<sub>2</sub>-norm type of regularization is proposed to implement the 2SLS estimation for addressing the weak instrument problem. The L<sub>2</sub>-norm regularization with a regularized parameter O(n) allows us to obtain the Rothenberg (1984) type of higher-order approximation of the 2SLS estimator in the weak instrument asymptotic framework. The proposed regularized parameter yields the regularized concentration parameter O(n), which is used as a standardized factor in the higher-order approximation. We also show that the proposed L<sub>2</sub>-norm regularization consequently reduces the finite sample bias. A number of existing estimators that address finite sample bias in the presence of weak instruments, especially Fuller's limited information maximum likelihood estimator, are compared with our proposed estimator in a simple Monte Carlo exercise.</dcterms:abstract> <dc:creator>Kim, Namhyun</dc:creator> <dcterms:issued>2016-07-23</dcterms:issued> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-12-13T12:29:06Z</dc:date> </rdf:Description> </rdf:RDF>