Publikation: Visual Integration of Data and Model Space in Ensemble Learning
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHNEIDER, Bruno, Dominik JÄCKLE, Florian STOFFEL, Alexandra DIEHL, Johannes FUCHS, Daniel A. KEIM, 2017. Visual Integration of Data and Model Space in Ensemble Learning. 2017 IEEE Visualization Conference (VIS). Phoenix, Arizona, USA, 1. Okt. 2017 - 6. Okt. 2017. In: Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017. 2017BibTex
@inproceedings{Schneider2017Visua-41755, year={2017}, title={Visual Integration of Data and Model Space in Ensemble Learning}, booktitle={Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017}, author={Schneider, Bruno and Jäckle, Dominik and Stoffel, Florian and Diehl, Alexandra and Fuchs, Johannes and Keim, Daniel A.}, note={Best paper award} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41755"> <dc:rights>terms-of-use</dc:rights> <dc:creator>Stoffel, Florian</dc:creator> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41755/1/Schneider_2-1k78ydsr7mgss7.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T12:43:30Z</dc:date> <dc:contributor>Jäckle, Dominik</dc:contributor> <dc:creator>Schneider, Bruno</dc:creator> <dc:contributor>Schneider, Bruno</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41755/1/Schneider_2-1k78ydsr7mgss7.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Visual Integration of Data and Model Space in Ensemble Learning</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:issued>2017</dcterms:issued> <dcterms:abstract xml:lang="eng">Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.</dcterms:abstract> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Diehl, Alexandra</dc:contributor> <dc:creator>Diehl, Alexandra</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T12:43:30Z</dcterms:available> <dc:contributor>Fuchs, Johannes</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41755"/> <dc:creator>Fuchs, Johannes</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>