Visual Integration of Data and Model Space in Ensemble Learning
Visual Integration of Data and Model Space in Ensemble Learning
Loading...
Date
2017
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017
Abstract
Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2017 IEEE Visualization Conference (VIS), Oct 1, 2017 - Oct 6, 2017, Phoenix, Arizona, USA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SCHNEIDER, Bruno, Dominik JÄCKLE, Florian STOFFEL, Alexandra DIEHL, Johannes FUCHS, Daniel A. KEIM, 2017. Visual Integration of Data and Model Space in Ensemble Learning. 2017 IEEE Visualization Conference (VIS). Phoenix, Arizona, USA, Oct 1, 2017 - Oct 6, 2017. In: Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017BibTex
@inproceedings{Schneider2017Visua-41755, year={2017}, title={Visual Integration of Data and Model Space in Ensemble Learning}, booktitle={Symposium on Visualization in Data Science (VDS) at IEEE VIS 2017}, author={Schneider, Bruno and Jäckle, Dominik and Stoffel, Florian and Diehl, Alexandra and Fuchs, Johannes and Keim, Daniel A.}, note={Best paper award} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41755"> <dc:rights>terms-of-use</dc:rights> <dc:creator>Stoffel, Florian</dc:creator> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41755/1/Schneider_2-1k78ydsr7mgss7.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T12:43:30Z</dc:date> <dc:contributor>Jäckle, Dominik</dc:contributor> <dc:creator>Schneider, Bruno</dc:creator> <dc:contributor>Schneider, Bruno</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41755/1/Schneider_2-1k78ydsr7mgss7.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Visual Integration of Data and Model Space in Ensemble Learning</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:issued>2017</dcterms:issued> <dcterms:abstract xml:lang="eng">Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.</dcterms:abstract> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Diehl, Alexandra</dc:contributor> <dc:creator>Diehl, Alexandra</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-13T12:43:30Z</dcterms:available> <dc:contributor>Fuchs, Johannes</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41755"/> <dc:creator>Fuchs, Johannes</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Best paper award
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes