Publikation:

How to treat mixed behavior segments in supervised machine learning of behavioural modes from inertial measurement data

Lade...
Vorschaubild

Dateien

Resheff_2-1kit5dxemswlo9.pdf
Resheff_2-1kit5dxemswlo9.pdfGröße: 2.45 MBDownloads: 24

Datum

2024

Autor:innen

Resheff, Yehezkel S.
Bensch, Hanna M.
Zöttl, Markus
Matsumoto-Oda, Akiko
Gomez, Sara
Börger, Luca
Rotics, Shay

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 742808
European Union (EU): 294494

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Movement Ecology. Springer Science and Business Media LLC. 2024, 12(1), 44. eISSN 2051-3933. Verfügbar unter: doi: 10.1186/s40462-024-00485-7

Zusammenfassung

The application of supervised machine learning methods to identify behavioural modes from inertial measurements of bio-loggers has become a standard tool in behavioural ecology. Several design choices can affect the accuracy of identifying the behavioural modes. One such choice is the inclusion or exclusion of segments consisting of more than a single behaviour (mixed segments) in the machine learning model training data. Currently, the common practice is to ignore such segments during model training. In this paper we tested the hypothesis that including mixed segments in model training will improve accuracy, as the model would perform better in identifying them in the test data. We test this hypothesis using a series of data simulations on four datasets of accelerometer data coupled with behaviour observations, obtained from four study species (Damaraland mole-rats, meerkats, olive baboons, polar bears). Results show that when a substantial proportion of the test data are mixed behaviour segments (above ~ 10%), including mixed segments in machine learning model training improves the accuracy of classification. These results were consistent across the four study species, and robust to changes in segment length, sample size, and degree of mixture within the mixed segments. However, we also find that in some cases (particularly in baboons) models trained with mixed segments show reduced accuracy in classifying test data containing only single behaviour (pure) segments, compared to models trained without mixed segments. Based on these results, we recommend that when the classification model is expected to deal with a substantial proportion of mixed behaviour segments (>10%), it is beneficial to include them in model training, otherwise, it is unnecessary but also not harmful. The exception is when there is a basis to assume that the training data contains a higher rate of mixed segments than the actual (unobserved) data to be classified—such a situation may occur particularly when training data are collected in captivity and used to classify data from the wild. In this case, excess inclusion of mixed segments in training data should probably be avoided.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Body-acceleration, Bio-logging, Machine learning, Animal behaviour

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RESHEFF, Yehezkel S., Hanna M. BENSCH, Markus ZÖTTL, Roi HAREL, Akiko MATSUMOTO-ODA, Margaret C. CROFOOT, Sara GOMEZ, Luca BÖRGER, Shay ROTICS, 2024. How to treat mixed behavior segments in supervised machine learning of behavioural modes from inertial measurement data. In: Movement Ecology. Springer Science and Business Media LLC. 2024, 12(1), 44. eISSN 2051-3933. Verfügbar unter: doi: 10.1186/s40462-024-00485-7
BibTex
@article{Resheff2024-06-10treat-70136,
  year={2024},
  doi={10.1186/s40462-024-00485-7},
  title={How to treat mixed behavior segments in supervised machine learning of behavioural modes from inertial measurement data},
  number={1},
  volume={12},
  journal={Movement Ecology},
  author={Resheff, Yehezkel S. and Bensch, Hanna M. and Zöttl, Markus and Harel, Roi and Matsumoto-Oda, Akiko and Crofoot, Margaret C. and Gomez, Sara and Börger, Luca and Rotics, Shay},
  note={Article Number: 44}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70136">
    <dcterms:issued>2024-06-10</dcterms:issued>
    <dc:creator>Matsumoto-Oda, Akiko</dc:creator>
    <dc:contributor>Harel, Roi</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70136"/>
    <dc:contributor>Resheff, Yehezkel S.</dc:contributor>
    <dc:contributor>Börger, Luca</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-17T11:21:05Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:title>How to treat mixed behavior segments in supervised machine learning of behavioural modes from inertial measurement data</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Resheff, Yehezkel S.</dc:creator>
    <dc:creator>Harel, Roi</dc:creator>
    <dc:contributor>Crofoot, Margaret C.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70136/1/Resheff_2-1kit5dxemswlo9.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-17T11:21:05Z</dc:date>
    <dc:contributor>Bensch, Hanna M.</dc:contributor>
    <dc:creator>Crofoot, Margaret C.</dc:creator>
    <dc:contributor>Zöttl, Markus</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Rotics, Shay</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract>The application of supervised machine learning methods to identify behavioural modes from inertial measurements of bio-loggers has become a standard tool in behavioural ecology. Several design choices can affect the accuracy of identifying the behavioural modes. One such choice is the inclusion or exclusion of segments consisting of more than a single behaviour (mixed segments) in the machine learning model training data. Currently, the common practice is to ignore such segments during model training. In this paper we tested the hypothesis that including mixed segments in model training will improve accuracy, as the model would perform better in identifying them in the test data. We test this hypothesis using a series of data simulations on four datasets of accelerometer data coupled with behaviour observations, obtained from four study species (Damaraland mole-rats, meerkats, olive baboons, polar bears). Results show that when a substantial proportion of the test data are mixed behaviour segments (above ~ 10%), including mixed segments in machine learning model training improves the accuracy of classification. These results were consistent across the four study species, and robust to changes in segment length, sample size, and degree of mixture within the mixed segments. However, we also find that in some cases (particularly in baboons) models trained with mixed segments show reduced accuracy in classifying test data containing only single behaviour (pure) segments, compared to models trained without mixed segments. Based on these results, we recommend that when the classification model is expected to deal with a substantial proportion of mixed behaviour segments (&gt;10%), it is beneficial to include them in model training, otherwise, it is unnecessary but also not harmful. The exception is when there is a basis to assume that the training data contains a higher rate of mixed segments than the actual (unobserved) data to be classified—such a situation may occur particularly when training data are collected in captivity and used to classify data from the wild. In this case, excess inclusion of mixed segments in training data should probably be avoided.</dcterms:abstract>
    <dc:contributor>Gomez, Sara</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70136/1/Resheff_2-1kit5dxemswlo9.pdf"/>
    <dc:creator>Zöttl, Markus</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Bensch, Hanna M.</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Börger, Luca</dc:creator>
    <dc:creator>Gomez, Sara</dc:creator>
    <dc:creator>Rotics, Shay</dc:creator>
    <dc:contributor>Matsumoto-Oda, Akiko</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen