Publikation: Self‐Healing and Light‐Soaking in MAPbI3 : The Effect of H2O
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The future of halide perovskites (HaPs) is beclouded by limited understanding of their long‐term stability. While HaPs can be altered by radiation that induces multiple processes, they can also return to their original state by “self‐healing.” Here two‐photon (2P) absorption is used to effect light‐induced modifications within MAPbI3 single crystals. Then the changes in the photodamaged region are followed by measuring the photoluminescence, from 2P absorption with 2.5 orders of magnitude lower intensity than that used for photodamaging the MAPbI3. After photodamage, two brightening and one darkening process are found, all of which recover but on different timescales. The first two are attributed to trap‐filling (the fastest) and to proton‐amine‐related chemistry (the slowest), while photodamage is attributed to the lead‐iodide sublattice. Surprisingly, while after 2P‐irradiation of crystals that are stored in dry, inert ambient, photobrightening (or “light‐soaking”) occurs, mostly photodarkening is seen after photodamage in humid ambient, showing an important connection between the self‐healing of a HaP and the presence of H2O, for long‐term steady‐state illumination, practically no difference remains between samples kept in dry or humid environments. This result suggests that photobrightening requires a chemical‐reservoir that is sensitive to the presence of H2O, or possibly other proton‐related, particularly amine, chemistry.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CERATTI, Davide Raffaele, Ron TENNE, Andrea BARTEZZAGHI, Llorenç CREMONESI, Lior SEGEV, Vyacheslav KALCHENKO, Dan ORON, Marco Alberto Carlo POTENZA, Gary HODES, David CAHEN, 2022. Self‐Healing and Light‐Soaking in MAPbI3 : The Effect of H2O. In: Advanced Materials. Wiley. 2022, 34(35), 2110239. ISSN 0935-9648. eISSN 1521-4095. Verfügbar unter: doi: 10.1002/adma.202110239BibTex
@article{Ceratti2022-09SelfH-71645, year={2022}, doi={10.1002/adma.202110239}, title={Self‐Healing and Light‐Soaking in MAPbI<sub>3</sub> : The Effect of H<sub>2</sub>O}, number={35}, volume={34}, issn={0935-9648}, journal={Advanced Materials}, author={Ceratti, Davide Raffaele and Tenne, Ron and Bartezzaghi, Andrea and Cremonesi, Llorenç and Segev, Lior and Kalchenko, Vyacheslav and Oron, Dan and Potenza, Marco Alberto Carlo and Hodes, Gary and Cahen, David}, note={Article Number: 2110239} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71645"> <dc:creator>Oron, Dan</dc:creator> <dc:contributor>Potenza, Marco Alberto Carlo</dc:contributor> <dc:creator>Cremonesi, Llorenç</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Cahen, David</dc:contributor> <dc:contributor>Kalchenko, Vyacheslav</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Self‐Healing and Light‐Soaking in MAPbI<sub>3</sub> : The Effect of H<sub>2</sub>O</dcterms:title> <dc:creator>Tenne, Ron</dc:creator> <dc:creator>Segev, Lior</dc:creator> <dc:contributor>Hodes, Gary</dc:contributor> <dc:contributor>Bartezzaghi, Andrea</dc:contributor> <dc:creator>Ceratti, Davide Raffaele</dc:creator> <dc:creator>Hodes, Gary</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71645/4/Ceratti_2-1kj1lrab7ryas7.pdf"/> <dc:contributor>Cremonesi, Llorenç</dc:contributor> <dc:contributor>Oron, Dan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T10:17:16Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T10:17:16Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:creator>Cahen, David</dc:creator> <dcterms:abstract>The future of halide perovskites (HaPs) is beclouded by limited understanding of their long‐term stability. While HaPs can be altered by radiation that induces multiple processes, they can also return to their original state by “self‐healing.” Here two‐photon (2P) absorption is used to effect light‐induced modifications within MAPbI<sub>3</sub> single crystals. Then the changes in the photodamaged region are followed by measuring the photoluminescence, from 2P absorption with 2.5 orders of magnitude lower intensity than that used for photodamaging the MAPbI<sub>3</sub>. After photodamage, two brightening and one darkening process are found, all of which recover but on different timescales. The first two are attributed to trap‐filling (the fastest) and to proton‐amine‐related chemistry (the slowest), while photodamage is attributed to the lead‐iodide sublattice. Surprisingly, while after 2P‐irradiation of crystals that are stored in dry, inert ambient, photobrightening (or “light‐soaking”) occurs, mostly photodarkening is seen after photodamage in humid ambient, showing an important connection between the self‐healing of a HaP and the presence of H<sub>2</sub>O, for long‐term steady‐state illumination, practically no difference remains between samples kept in dry or humid environments. This result suggests that photobrightening requires a chemical‐reservoir that is sensitive to the presence of H<sub>2</sub>O, or possibly other proton‐related, particularly amine, chemistry.</dcterms:abstract> <dc:contributor>Tenne, Ron</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71645/4/Ceratti_2-1kj1lrab7ryas7.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:issued>2022-09</dcterms:issued> <dc:contributor>Segev, Lior</dc:contributor> <dc:creator>Bartezzaghi, Andrea</dc:creator> <dc:creator>Potenza, Marco Alberto Carlo</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71645"/> <dc:language>eng</dc:language> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dc:creator>Kalchenko, Vyacheslav</dc:creator> <dc:contributor>Ceratti, Davide Raffaele</dc:contributor> </rdf:Description> </rdf:RDF>