Publikation:

Rate of Stability in Hyperbolic Thermoelasticity

Lade...
Vorschaubild

Dateien

preprint_214.pdf
preprint_214.pdfGröße: 590.55 KBDownloads: 193

Datum

2006

Autor:innen

Irmscher, Tilman

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690IRMSCHER, Tilman, 2006. Rate of Stability in Hyperbolic Thermoelasticity
BibTex
@unpublished{Irmscher2006Stabi-6189,
  year={2006},
  title={Rate of Stability in Hyperbolic Thermoelasticity},
  author={Irmscher, Tilman}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6189">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6189"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Rate of Stability in Hyperbolic Thermoelasticity</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Irmscher, Tilman</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2006</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.</dcterms:abstract>
    <dc:format>application/pdf</dc:format>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Irmscher, Tilman</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen