Publikation: Rate of Stability in Hyperbolic Thermoelasticity
Lade...
Dateien
Datum
2006
Autor:innen
Irmscher, Tilman
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
IRMSCHER, Tilman, 2006. Rate of Stability in Hyperbolic ThermoelasticityBibTex
@unpublished{Irmscher2006Stabi-6189, year={2006}, title={Rate of Stability in Hyperbolic Thermoelasticity}, author={Irmscher, Tilman} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6189"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6189"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Rate of Stability in Hyperbolic Thermoelasticity</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Irmscher, Tilman</dc:contributor> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2006</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.</dcterms:abstract> <dc:format>application/pdf</dc:format> <dc:rights>terms-of-use</dc:rights> <dc:creator>Irmscher, Tilman</dc:creator> </rdf:Description> </rdf:RDF>