Publikation:

The exponential-logarithmic equivalence classes of surreal numbers

Lade...
Vorschaubild

Dateien

kuhlmann_212616.pdf
kuhlmann_212616.pdfGröße: 153.28 KBDownloads: 207

Datum

2012

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In his monograph, H. Gonshor showed that Conway's real closed field of surreal numbers carries an exponential and logarithmic map. Subsequently, L. van den Dries and P. Ehrlich showed that it is a model of the elementary theory of the field of real numbers with the exponential function. In this paper, we give a complete description of the exponential equivalence classes in the spirit of the classical Archimedean and multiplicative equivalence classes. This description is made in terms of a recursive formula as well as a sign sequence formula for the family of representatives of minimal length of these exponential classes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Salma, Mickael MATUSINSKI, 2012. The exponential-logarithmic equivalence classes of surreal numbers
BibTex
@unpublished{Kuhlmann2012expon-21261,
  year={2012},
  title={The exponential-logarithmic equivalence classes of surreal numbers},
  author={Kuhlmann, Salma and Matusinski, Mickael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21261">
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21261"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21261/1/kuhlmann_212616.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T10:39:18Z</dc:date>
    <dcterms:title>The exponential-logarithmic equivalence classes of surreal numbers</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T10:39:18Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21261/1/kuhlmann_212616.pdf"/>
    <dc:contributor>Matusinski, Mickael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Matusinski, Mickael</dc:creator>
    <dcterms:abstract xml:lang="eng">In his monograph, H. Gonshor showed that Conway's real closed field of surreal numbers carries an exponential and logarithmic map. Subsequently, L. van den Dries and P. Ehrlich showed that it is a model of the elementary theory of the field of real numbers with the exponential function. In this paper, we give a complete description of the exponential equivalence classes in the spirit of the classical Archimedean and multiplicative equivalence classes. This description is made in terms of a recursive formula as well as a sign sequence formula for the family of representatives of minimal length of these exponential classes.</dcterms:abstract>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen