Publikation:

Into the Unknown : Active Monitoring of Neural Networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Lukina, Anna
Henzinger, Thomas A.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

FENG, Lu, ed., Dana FISMAN, ed.. Runtime Verification : 21st International Conference, RV 2021, Virtual Event, October 11-14, 2021, proceedings. Cham: Springer, 2021, pp. 42-61. Lecture Notes in Computer Science. 12974. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-88493-2. Available under: doi: 10.1007/978-3-030-88494-9_3

Zusammenfassung

Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. The typical approach is to detect inputs from novel classes and retrain the classifier on an augmented dataset. However, not only the classifier but also the detection mechanism needs to adapt in order to distinguish between newly learned and yet unknown input classes. To address this challenge, we introduce an algorithmic framework for active monitoring of a neural network. A monitor wrapped in our framework operates in parallel with the neural network and interacts with a human user via a series of interpretable labeling queries for incremental adaptation. In addition, we propose an adaptive quantitative monitor to improve precision. An experimental evaluation on a diverse set of benchmarks with varying numbers of classes confirms the benefits of our active monitoring framework in dynamic scenarios.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

21st International Conference, RV 2021, 11. Okt. 2021 - 14. Okt. 2021, Virtual Event
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LUKINA, Anna, Christian SCHILLING, Thomas A. HENZINGER, 2021. Into the Unknown : Active Monitoring of Neural Networks. 21st International Conference, RV 2021. Virtual Event, 11. Okt. 2021 - 14. Okt. 2021. In: FENG, Lu, ed., Dana FISMAN, ed.. Runtime Verification : 21st International Conference, RV 2021, Virtual Event, October 11-14, 2021, proceedings. Cham: Springer, 2021, pp. 42-61. Lecture Notes in Computer Science. 12974. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-88493-2. Available under: doi: 10.1007/978-3-030-88494-9_3
BibTex
@inproceedings{Lukina2021Unkno-55818,
  year={2021},
  doi={10.1007/978-3-030-88494-9_3},
  title={Into the Unknown : Active Monitoring of Neural Networks},
  number={12974},
  isbn={978-3-030-88493-2},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Runtime Verification : 21st International Conference, RV 2021, Virtual Event, October 11-14, 2021, proceedings},
  pages={42--61},
  editor={Feng, Lu and Fisman, Dana},
  author={Lukina, Anna and Schilling, Christian and Henzinger, Thomas A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55818">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Lukina, Anna</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Schilling, Christian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schilling, Christian</dc:creator>
    <dcterms:abstract xml:lang="eng">Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. The typical approach is to detect inputs from novel classes and retrain the classifier on an augmented dataset. However, not only the classifier but also the detection mechanism needs to adapt in order to distinguish between newly learned and yet unknown input classes. To address this challenge, we introduce an algorithmic framework for active monitoring of a neural network. A monitor wrapped in our framework operates in parallel with the neural network and interacts with a human user via a series of interpretable labeling queries for incremental adaptation. In addition, we propose an adaptive quantitative monitor to improve precision. An experimental evaluation on a diverse set of benchmarks with varying numbers of classes confirms the benefits of our active monitoring framework in dynamic scenarios.</dcterms:abstract>
    <dc:contributor>Lukina, Anna</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-09T10:33:44Z</dcterms:available>
    <dcterms:title>Into the Unknown : Active Monitoring of Neural Networks</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55818"/>
    <dc:contributor>Henzinger, Thomas A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Henzinger, Thomas A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-09T10:33:44Z</dc:date>
    <dcterms:issued>2021</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen