Publikation: Fault-Tolerant Concept Detection in Information Networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Given information about medical drugs and their properties, how can we automatically discover that Aspirin has blood-thinning properties, and thus prevents heart attacks? Expressed in more general terms, if we have a large in- formation network that integrates data from heterogeneous data sources, how can we extract semantic information that provides a better understanding of the integrated data and also helps us to identify missing links? We propose to extract concepts that describe groups of objects and their common properties from the integrated data. The discovered concepts provide semantic information as well as an abstract view on the integrated data and thus improve the understanding of complex systems. Our proposed method has the following desirable properties: (a) it is parameter-free and therefore requires no user-defined parameters (b) it is fault-tolerant, allowing for the detection of missing links and (c) it is scalable, being linear on the input size. We demonstrate the effectiveness and scalability of the proposed method on real, publicly available graphs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KÖTTER, Tobias, Stephan GÜNNEMANN, Michael R. BERTHOLD, Christos FALOUTSOS, 2014. Fault-Tolerant Concept Detection in Information Networks. 18th Pacific-Asia Conference, PAKDD 2014. Tainan, Taiwan, 13. Mai 2014 - 16. Mai 2014. In: VINCENT S. TSENG ..., , ed.. Advances in Knowledge Discovery and Data Mining : 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13-16, 2014 ; Proceedings, Part I. Cham: Springer, 2014, pp. 410-421. Lecture Notes in Computer Science. 8443. ISBN 978-3-319-06607-3. Available under: doi: 10.1007/978-3-319-06608-0_34BibTex
@inproceedings{Kotter2014Fault-30358, year={2014}, doi={10.1007/978-3-319-06608-0_34}, title={Fault-Tolerant Concept Detection in Information Networks}, number={8443}, isbn={978-3-319-06607-3}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Advances in Knowledge Discovery and Data Mining : 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13-16, 2014 ; Proceedings, Part I}, pages={410--421}, editor={Vincent S. Tseng ...}, author={Kötter, Tobias and Günnemann, Stephan and Berthold, Michael R. and Faloutsos, Christos} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30358"> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:abstract xml:lang="eng">Given information about medical drugs and their properties, how can we automatically discover that Aspirin has blood-thinning properties, and thus prevents heart attacks? Expressed in more general terms, if we have a large in- formation network that integrates data from heterogeneous data sources, how can we extract semantic information that provides a better understanding of the integrated data and also helps us to identify missing links? We propose to extract concepts that describe groups of objects and their common properties from the integrated data. The discovered concepts provide semantic information as well as an abstract view on the integrated data and thus improve the understanding of complex systems. Our proposed method has the following desirable properties: (a) it is parameter-free and therefore requires no user-defined parameters (b) it is fault-tolerant, allowing for the detection of missing links and (c) it is scalable, being linear on the input size. We demonstrate the effectiveness and scalability of the proposed method on real, publicly available graphs.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Günnemann, Stephan</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30358/1/Koetter_0-274177.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Faloutsos, Christos</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T16:38:47Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30358"/> <dc:creator>Faloutsos, Christos</dc:creator> <dc:contributor>Kötter, Tobias</dc:contributor> <dc:creator>Günnemann, Stephan</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30358/1/Koetter_0-274177.pdf"/> <dcterms:title>Fault-Tolerant Concept Detection in Information Networks</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T16:38:47Z</dc:date> <dc:creator>Kötter, Tobias</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>