Publikation:

Even Faster Exact k-Means Clustering

Lade...
Vorschaubild

Dateien

Borgelt_2-1kp54adjk555h8.pdf
Borgelt_2-1kp54adjk555h8.pdfGröße: 846.83 KBDownloads: 211

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BERTHOLD, Michael R., ed., Ad FEELDERS, ed., Georg KREMPL, ed.. Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, Proceedings. Cham: Springer, 2020, pp. 93-105. Lecture Notes in Computer Science. 12080. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-44583-6. Available under: doi: 10.1007/978-3-030-44584-3_8

Zusammenfassung

A naïve implementation of k-means clustering requires computing for each of the n data points the distance to each of the k cluster centers, which can result in fairly slow execution. However, by storing distance information obtained by earlier computations as well as information about distances between cluster centers, the triangle inequality can be exploited in different ways to reduce the number of needed distance computations, e.g. [3, 4, 5, 7, 11]. In this paper I present an improvement of the Exponion method [11] that generally accelerates the computations. Furthermore, by evaluating several methods on a fairly wide range of artificial data sets, I derive a kind of map, for which data set parameters which method (often) yields the lowest execution times.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Exact k-means, Triangle inequality, Exponion

Konferenz

IDA 2020: Advances in Intelligent Data Analysis XVIII, 27. Apr. 2020 - 29. Apr. 2020, Konstanz
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BORGELT, Christian, 2020. Even Faster Exact k-Means Clustering. IDA 2020: Advances in Intelligent Data Analysis XVIII. Konstanz, 27. Apr. 2020 - 29. Apr. 2020. In: BERTHOLD, Michael R., ed., Ad FEELDERS, ed., Georg KREMPL, ed.. Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, Proceedings. Cham: Springer, 2020, pp. 93-105. Lecture Notes in Computer Science. 12080. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-44583-6. Available under: doi: 10.1007/978-3-030-44584-3_8
BibTex
@inproceedings{Borgelt2020-04-22Faste-55969,
  year={2020},
  doi={10.1007/978-3-030-44584-3_8},
  title={Even Faster Exact k-Means Clustering},
  number={12080},
  isbn={978-3-030-44583-6},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, Proceedings},
  pages={93--105},
  editor={Berthold, Michael R. and Feelders, Ad and Krempl, Georg},
  author={Borgelt, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55969">
    <dcterms:title>Even Faster Exact k-Means Clustering</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55969"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55969/1/Borgelt_2-1kp54adjk555h8.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T15:00:13Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55969/1/Borgelt_2-1kp54adjk555h8.pdf"/>
    <dcterms:issued>2020-04-22</dcterms:issued>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">A naïve implementation of k-means clustering requires computing for each of the n data points the distance to each of the k cluster centers, which can result in fairly slow execution. However, by storing distance information obtained by earlier computations as well as information about distances between cluster centers, the triangle inequality can be exploited in different ways to reduce the number of needed distance computations, e.g. [3, 4, 5, 7, 11]. In this paper I present an improvement of the Exponion method [11] that generally accelerates the computations. Furthermore, by evaluating several methods on a fairly wide range of artificial data sets, I derive a kind of map, for which data set parameters which method (often) yields the lowest execution times.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T15:00:13Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen