Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014 Stuttgart, Germany. 2014
Zusammenfassung

Scatter plots are effective diagrams to visualize distributions, clusters and correlations in two-dimensional data space. For highdimensional data, scatter plot matrices can be formed to show all two-dimensional combinations of dimensions. Several previous approaches for exploration of large scatter plot spaces have focused on ranking and sorting scatter plot matrices based on global patterns. However, often local patterns are of interest for scatter plot exploration. We present a preliminary idea to explore the scatter plot space by identifying significant local patterns (also called motifs in this work). Based on certain clustering algorithms and image-based descriptors, we identify and group a set of similar local candidate motifs in a large scatter plot space.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Informatik 2014 - Big Data : Komplexität meistern, 22. Sept. 2014 - 26. Sept. 2014, Stuttgart
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SHAO, Lin, Michael BEHRISCH, Tobias SCHRECK, Ivan SIPIRAN, Bum Chul KWON, Daniel A. KEIM, 2014. Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices. Informatik 2014 - Big Data : Komplexität meistern. Stuttgart, 22. Sept. 2014 - 26. Sept. 2014. In: GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014 Stuttgart, Germany. 2014
BibTex
@inproceedings{Shao2014Ident-30219,
  year={2014},
  title={Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices},
  booktitle={GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014 Stuttgart, Germany},
  author={Shao, Lin and Behrisch, Michael and Schreck, Tobias and Sipiran, Ivan and Kwon, Bum Chul and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30219">
    <dc:creator>Shao, Lin</dc:creator>
    <dc:creator>Kwon, Bum Chul</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Sipiran, Ivan</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Sipiran, Ivan</dc:creator>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:contributor>Kwon, Bum Chul</dc:contributor>
    <dcterms:abstract xml:lang="eng">Scatter plots are effective diagrams to visualize distributions, clusters and correlations in two-dimensional data space. For highdimensional data, scatter plot matrices can be formed to show all two-dimensional combinations of dimensions. Several previous approaches for exploration of large scatter plot spaces have focused on ranking and sorting scatter plot matrices based on global patterns. However, often local patterns are of interest for scatter plot exploration. We present a preliminary idea to explore the scatter plot space by identifying significant local patterns (also called motifs in this work). Based on certain clustering algorithms and image-based descriptors, we identify and group a set of similar local candidate motifs in a large scatter plot space.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:03:56Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30219"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:03:56Z</dc:date>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen