Publikation: Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Traditional historical linguistics lacks the possibility to empirically assess its assumptions regarding the phonetic systems of past languages and language stages since most current methods rely on comparative tools to gain insights into phonetic features of sounds in proto- or ancestor languages. The paper at hand presents a computational method based on deep neural networks to predict phonetic features of historical sounds where the exact quality is unknown and to test the overall coherence of reconstructed historical phonetic features. The method utilizes the principles of coarticulation, local predictability and statistical phonological constraints to predict phonetic features by the features of their immediate phonetic environment. The validity of this method will be assessed using New High German phonetic data and its specific application to diachronic linguistics will be demonstrated in a case study of the phonetic system Proto-Indo-European.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HARTMANN, Frederik, 2019. Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European. 1st International Workshop on Computational Approaches to Historical Language Change. Florence, Italy, 2. Aug. 2019. In: TAHMASEBI, Nina, ed. and others. Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change. Stroudsburg, PA, USA: ACL, 2019, pp. 98-108. ISBN 978-1-950737-31-4. Available under: doi: 10.18653/v1/W19-4713BibTex
@inproceedings{Hartmann2019Predi-50853, year={2019}, doi={10.18653/v1/W19-4713}, title={Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European}, isbn={978-1-950737-31-4}, publisher={ACL}, address={Stroudsburg, PA, USA}, booktitle={Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change}, pages={98--108}, editor={Tahmasebi, Nina}, author={Hartmann, Frederik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50853"> <dcterms:abstract xml:lang="eng">Traditional historical linguistics lacks the possibility to empirically assess its assumptions regarding the phonetic systems of past languages and language stages since most current methods rely on comparative tools to gain insights into phonetic features of sounds in proto- or ancestor languages. The paper at hand presents a computational method based on deep neural networks to predict phonetic features of historical sounds where the exact quality is unknown and to test the overall coherence of reconstructed historical phonetic features. The method utilizes the principles of coarticulation, local predictability and statistical phonological constraints to predict phonetic features by the features of their immediate phonetic environment. The validity of this method will be assessed using New High German phonetic data and its specific application to diachronic linguistics will be demonstrated in a case study of the phonetic system Proto-Indo-European.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2019</dcterms:issued> <dcterms:title>Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-16T09:16:55Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50853"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hartmann, Frederik</dc:contributor> <dc:creator>Hartmann, Frederik</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-16T09:16:55Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>