Publikation:

Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

TAHMASEBI, Nina, ed. and others. Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change. Stroudsburg, PA, USA: ACL, 2019, pp. 98-108. ISBN 978-1-950737-31-4. Available under: doi: 10.18653/v1/W19-4713

Zusammenfassung

Traditional historical linguistics lacks the possibility to empirically assess its assumptions regarding the phonetic systems of past languages and language stages since most current methods rely on comparative tools to gain insights into phonetic features of sounds in proto- or ancestor languages. The paper at hand presents a computational method based on deep neural networks to predict phonetic features of historical sounds where the exact quality is unknown and to test the overall coherence of reconstructed historical phonetic features. The method utilizes the principles of coarticulation, local predictability and statistical phonological constraints to predict phonetic features by the features of their immediate phonetic environment. The validity of this method will be assessed using New High German phonetic data and its specific application to diachronic linguistics will be demonstrated in a case study of the phonetic system Proto-Indo-European.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik

Schlagwörter

Konferenz

1st International Workshop on Computational Approaches to Historical Language Change, 2. Aug. 2019, Florence, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HARTMANN, Frederik, 2019. Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European. 1st International Workshop on Computational Approaches to Historical Language Change. Florence, Italy, 2. Aug. 2019. In: TAHMASEBI, Nina, ed. and others. Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change. Stroudsburg, PA, USA: ACL, 2019, pp. 98-108. ISBN 978-1-950737-31-4. Available under: doi: 10.18653/v1/W19-4713
BibTex
@inproceedings{Hartmann2019Predi-50853,
  year={2019},
  doi={10.18653/v1/W19-4713},
  title={Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European},
  isbn={978-1-950737-31-4},
  publisher={ACL},
  address={Stroudsburg, PA, USA},
  booktitle={Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change},
  pages={98--108},
  editor={Tahmasebi, Nina},
  author={Hartmann, Frederik}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50853">
    <dcterms:abstract xml:lang="eng">Traditional historical linguistics lacks the possibility to empirically assess its assumptions regarding the phonetic systems of past languages and language stages since most current methods rely on comparative tools to gain insights into phonetic features of sounds in proto- or ancestor languages. The paper at hand presents a computational method based on deep neural networks to predict phonetic features of historical sounds where the exact quality is unknown and to test the overall coherence of reconstructed historical phonetic features. The method utilizes the principles of coarticulation, local predictability and statistical phonological constraints to predict phonetic features by the features of their immediate phonetic environment. The validity of this method will be assessed using New High German phonetic data and its specific application to diachronic linguistics will be demonstrated in a case study of the phonetic system Proto-Indo-European.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:title>Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-16T09:16:55Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50853"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hartmann, Frederik</dc:contributor>
    <dc:creator>Hartmann, Frederik</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-16T09:16:55Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen