Publikation: Two Stage Fuzzy Models and Potential Outliers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. In this paper we describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier-model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier-model on the other hand may point out potential areas of interest to the user. Preliminary experiments indicate that the two models in fact have lower complexity and sometimes even offer superior performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., 1999. Two Stage Fuzzy Models and Potential Outliers. In: BREWKA, Gerhard, ed. and others. Fuzzy neuro systems ' 99 : [ computational intelligence. Leipzig: Leipziger Univ.-Verl, 1999, pp. 41-53. ISBN 3-933240-75-1BibTex
@inproceedings{Berthold1999Stage-24400, year={1999}, title={Two Stage Fuzzy Models and Potential Outliers}, isbn={3-933240-75-1}, publisher={Leipziger Univ.-Verl}, address={Leipzig}, booktitle={Fuzzy neuro systems ' 99 : [ computational intelligence}, pages={41--53}, editor={Brewka, Gerhard}, author={Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24400"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24400/1/Berthold_244005.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-16T13:29:03Z</dc:date> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>Fuzzy neuro systems '99 : [computational intelligence] / Gerhard Brewka ... (eds.). - Leipzig : Leipziger Univ.-Verl., 1999. - S. 41-53. - ISBN 3-933240-75-1</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>1999</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Two Stage Fuzzy Models and Potential Outliers</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-16T13:29:03Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24400"/> <dcterms:abstract xml:lang="eng">Outliers or distorted attributes very often severely interfere with data analysis algorithms that try to extract few meaningful rules. Most methods to deal with outliers try to completely ignore them. This can be potentially harmful since the very outlier that was ignored might have described a rare but still extremely interesting phenomena. In this paper we describe an approach that tries to build an interpretable model while still maintaining all the information in the data. This is achieved through a two stage process. A first phase builds an outlier-model for data points of low relevance, followed by a second stage which uses this model as filter and generates a simpler model, describing only examples with higher relevance, thus representing a more general concept. The outlier-model on the other hand may point out potential areas of interest to the user. Preliminary experiments indicate that the two models in fact have lower complexity and sometimes even offer superior performance.</dcterms:abstract> <dc:contributor>Berthold, Michael R.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24400/1/Berthold_244005.pdf"/> </rdf:Description> </rdf:RDF>