Publikation:

Reduced-order methods for a parametrized model for erythropoiesis involving structured population equations with one structural variable

Lade...
Vorschaubild

Dateien

Beermann_0-283508.pdf
Beermann_0-283508.pdfGröße: 17.46 MBDownloads: 412

Datum

2015

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The thesis investigates a one-dimensional, hyperbolic evolution equation containing one structural variable, with a particular focus on a model of erythropoiesis developed by Fürtinger et al. in 2012. Three di erent discretization techniques which all result in so-called high-fidility or detailed solutions are introduced and discussed. The methods used include Finite Differences and a polynomial representation of the structural variable. Viewed from the perspective of Optimal control, the model takes the form of a Parametrized Partial Di erential Equation (P2DE) where both the control and other data values are treated as parameters of the equation. This places the problem into a multi-query context, making model order reduction (MOR) techniques conceivable. Reduced basis (RB) strategies are employed to reduce the dimension of the utilized discretization spaces with a Galerkin projection. The reduced space is generated by applying a Greedy algorithm with methods including both the addition of single snapshots as well as Proper Orthogonal Decomposition (POD). In order to assess the error between the detailed and the reduced solution, two a-posteriori estimators are introduced and analyzed. Algorithmically, an offine/online decomposition scheme is used to enable e cient computations of both the reduced solutions and the estimators. Lastly, numerical experiments are presented to evaluate the feasibility of model order reduction techniques for the problem at hand.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

model order reduction, reduced basis, a-posteriori error estimates, proper orthogonal decomposition, greedy algorithm, erythropoiesis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEERMANN, Dennis, 2015. Reduced-order methods for a parametrized model for erythropoiesis involving structured population equations with one structural variable [Master thesis]. Konstanz: Univ.
BibTex
@mastersthesis{Beermann2015Reduc-30201,
  year={2015},
  title={Reduced-order methods for a parametrized model for erythropoiesis involving structured population equations with one structural variable},
  address={Konstanz},
  school={Univ.},
  author={Beermann, Dennis},
  note={Diplomarbeit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30201">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Beermann, Dennis</dc:creator>
    <dcterms:title>Reduced-order methods for a parametrized model for erythropoiesis involving structured population equations with one structural variable</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T13:10:38Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30201/3/Beermann_0-283508.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30201"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30201/3/Beermann_0-283508.pdf"/>
    <dc:contributor>Beermann, Dennis</dc:contributor>
    <dcterms:abstract xml:lang="eng">The thesis investigates a one-dimensional, hyperbolic evolution equation containing one structural variable, with a particular focus on a model of erythropoiesis developed by Fürtinger et al. in 2012. Three di erent discretization techniques which all result in so-called high-fidility or detailed solutions are introduced and discussed. The methods used include Finite Differences and a polynomial representation of the structural variable. Viewed from the perspective of Optimal control, the model takes the form of a Parametrized Partial Di erential Equation (P2DE) where both the control and other data values are treated as parameters of the equation. This places the problem into a multi-query context, making model order reduction (MOR) techniques conceivable. Reduced basis (RB) strategies are employed to reduce the dimension of the utilized discretization spaces with a Galerkin projection. The reduced space is generated by applying a Greedy algorithm with methods including both the addition of single snapshots as well as Proper Orthogonal Decomposition (POD). In order to assess the error between the detailed and the reduced solution, two a-posteriori estimators are introduced and analyzed. Algorithmically, an offine/online decomposition scheme is used to enable e cient computations of both the reduced solutions and the estimators. Lastly, numerical experiments are presented to evaluate the feasibility of model order reduction techniques for the problem at hand.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T13:10:38Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Univ., Masterarbeit/Diplomarbeit, 2015
Finanzierungsart

Kommentar zur Publikation

Diplomarbeit
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen