Publikation: Method for co-cluster analysis in multichannel single-molecule localisation data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We demonstrate a combined univariate and bivariate Getis and Franklin's local point pattern analysis method to investigate the co-clustering of membrane proteins in two-dimensional single-molecule localisation data. This method assesses the degree of clustering of each molecule relative to its own species and relative to a second species. Using simulated data, we show that this approach can quantify the degree of cluster overlap in multichannel point patterns. The method is validated using photo-activated localisation microscopy and direct stochastic optical reconstruction microscopy data of the proteins Lck and CD45 at the T cell immunological synapse. Analysing co-clustering in this manner is generalizable to higher numbers of fluorescent species and to three-dimensional or live cell data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ROSSY, Jérémie, Edward COHEN, Katharina GAUS, Dylan M. OWEN, 2014. Method for co-cluster analysis in multichannel single-molecule localisation data. In: Histochemistry and Cell Biology. 2014, 141(6), pp. 605-612. ISSN 0018-2222. eISSN 1432-119X. Available under: doi: 10.1007/s00418-014-1208-zBibTex
@article{Rossy2014-06Metho-43249, year={2014}, doi={10.1007/s00418-014-1208-z}, title={Method for co-cluster analysis in multichannel single-molecule localisation data}, number={6}, volume={141}, issn={0018-2222}, journal={Histochemistry and Cell Biology}, pages={605--612}, author={Rossy, Jérémie and Cohen, Edward and Gaus, Katharina and Owen, Dylan M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43249"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Method for co-cluster analysis in multichannel single-molecule localisation data</dcterms:title> <dc:contributor>Owen, Dylan M.</dc:contributor> <dc:creator>Owen, Dylan M.</dc:creator> <dc:creator>Cohen, Edward</dc:creator> <dc:contributor>Cohen, Edward</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <dc:creator>Gaus, Katharina</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-12T08:21:33Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:issued>2014-06</dcterms:issued> <dc:contributor>Rossy, Jérémie</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-12T08:21:33Z</dc:date> <dc:contributor>Gaus, Katharina</dc:contributor> <dcterms:abstract xml:lang="eng">We demonstrate a combined univariate and bivariate Getis and Franklin's local point pattern analysis method to investigate the co-clustering of membrane proteins in two-dimensional single-molecule localisation data. This method assesses the degree of clustering of each molecule relative to its own species and relative to a second species. Using simulated data, we show that this approach can quantify the degree of cluster overlap in multichannel point patterns. The method is validated using photo-activated localisation microscopy and direct stochastic optical reconstruction microscopy data of the proteins Lck and CD45 at the T cell immunological synapse. Analysing co-clustering in this manner is generalizable to higher numbers of fluorescent species and to three-dimensional or live cell data sets.</dcterms:abstract> <dc:creator>Rossy, Jérémie</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43249"/> </rdf:Description> </rdf:RDF>