Publikation:

Bivariate Gaussian bridges : directional factorization of diffusion in Brownian bridge models

Lade...
Vorschaubild

Dateien

Kranstauber_2-1lm6746h5egst7.pdf
Kranstauber_2-1lm6746h5egst7.pdfGröße: 2.89 MBDownloads: 181

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Movement Ecology. BioMed Central. 2014, 2, 5. eISSN 2051-3933. Available under: doi: 10.1186/2051-3933-2-5

Zusammenfassung

Background
In recent years high resolution animal tracking data has become the standard in movement ecology. The Brownian Bridge Movement Model (BBMM) is a widely adopted approach to describe animal space use from such high resolution tracks. One of the underlying assumptions of the BBMM is isotropic diffusive motion between consecutive locations, i.e. invariant with respect to the direction. Here we propose to relax this often unrealistic assumption by separating the Brownian motion variance into two directional components, one parallel and one orthogonal to the direction of the motion.

Results
Our new model, the Bivariate Gaussian bridge (BGB), tracks movement heterogeneity across time. Using the BGB and identifying directed and non-directed movement within a trajectory resulted in more accurate utilisation distributions compared to dynamic Brownian bridges, especially for trajectories with a non-isotropic diffusion, such as directed movement or Lévy like movements. We evaluated our model with simulated trajectories and observed tracks, demonstrating that the improvement of our model scales with the directional correlation of a correlated random walk.

Conclusion
We find that many of the animal trajectories do not adhere to the assumptions of the BBMM. The proposed model improves accuracy when describing the space use both in simulated correlated random walks as well as observed animal tracks. Our novel approach is implemented and available within the “move” package for R.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Dynamic Bivariate Gaussian bridge, Dynamic Brownian bridge movement model, Utilisation distribution, Animal tracking, GPS, Home range and space use modelling

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRANSTAUBER, Bart, Kamran SAFI, Frederic BARTUMEUS, 2014. Bivariate Gaussian bridges : directional factorization of diffusion in Brownian bridge models. In: Movement Ecology. BioMed Central. 2014, 2, 5. eISSN 2051-3933. Available under: doi: 10.1186/2051-3933-2-5
BibTex
@article{Kranstauber2014Bivar-52040,
  year={2014},
  doi={10.1186/2051-3933-2-5},
  title={Bivariate Gaussian bridges : directional factorization of diffusion in Brownian bridge models},
  volume={2},
  journal={Movement Ecology},
  author={Kranstauber, Bart and Safi, Kamran and Bartumeus, Frederic},
  note={Article Number: 5}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52040">
    <dc:language>eng</dc:language>
    <dc:creator>Kranstauber, Bart</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/2.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52040/3/Kranstauber_2-1lm6746h5egst7.pdf"/>
    <dcterms:title>Bivariate Gaussian bridges : directional factorization of diffusion in Brownian bridge models</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Safi, Kamran</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52040"/>
    <dcterms:abstract xml:lang="eng">Background&lt;br /&gt;In recent years high resolution animal tracking data has become the standard in movement ecology. The Brownian Bridge Movement Model (BBMM) is a widely adopted approach to describe animal space use from such high resolution tracks. One of the underlying assumptions of the BBMM is isotropic diffusive motion between consecutive locations, i.e. invariant with respect to the direction. Here we propose to relax this often unrealistic assumption by separating the Brownian motion variance into two directional components, one parallel and one orthogonal to the direction of the motion.&lt;br /&gt;&lt;br /&gt;Results&lt;br /&gt;Our new model, the Bivariate Gaussian bridge (BGB), tracks movement heterogeneity across time. Using the BGB and identifying directed and non-directed movement within a trajectory resulted in more accurate utilisation distributions compared to dynamic Brownian bridges, especially for trajectories with a non-isotropic diffusion, such as directed movement or Lévy like movements. We evaluated our model with simulated trajectories and observed tracks, demonstrating that the improvement of our model scales with the directional correlation of a correlated random walk.&lt;br /&gt;&lt;br /&gt;Conclusion&lt;br /&gt;We find that many of the animal trajectories do not adhere to the assumptions of the BBMM. The proposed model improves accuracy when describing the space use both in simulated correlated random walks as well as observed animal tracks. Our novel approach is implemented and available within the “move” package for R.</dcterms:abstract>
    <dc:rights>Attribution 2.0 Generic</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-08T09:47:34Z</dcterms:available>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Safi, Kamran</dc:creator>
    <dc:contributor>Bartumeus, Frederic</dc:contributor>
    <dc:creator>Bartumeus, Frederic</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-08T09:47:34Z</dc:date>
    <dc:contributor>Kranstauber, Bart</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52040/3/Kranstauber_2-1lm6746h5egst7.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen