Publikation: Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Individuals differ in their physiological responsiveness to stressful challenges, and stress potentiates the development of many diseases. Heart rate variability (HRV), a measure of cardiac vagal break, is emerging as a strong index of physiological stress vulnerability. Thus, it is important to develop tools that identify predictive markers of individual differences in HRV responsiveness without exposing subjects to high stress. Here, using machine learning approaches, we show the strong predictive power of high-dimensional locomotor responses during novelty exploration to predict HRV responsiveness during stress exposure. Locomotor responses are collected in two ecologically valid virtual reality scenarios inspired by the animal literature and stress is elicited and measured in a third threatening virtual scenario. Our model's predictions generalize to other stressful challenges and outperforms other stress prediction instruments, such as anxiety questionnaires. Our study paves the way for the development of behavioral digital phenotyping tools for early detection of stress-vulnerable individuals.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RODRIGUES, João, Erik STUDER, Stephan STREUBER, Nathalie MEYER, Carmen SANDI, 2020. Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges. In: Nature Communications. Nature Publishing Group. 2020, 11, 5904. eISSN 2041-1723. Available under: doi: 10.1038/s41467-020-19736-3BibTex
@article{Rodrigues2020Locom-52590, year={2020}, doi={10.1038/s41467-020-19736-3}, title={Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges}, volume={11}, journal={Nature Communications}, author={Rodrigues, João and Studer, Erik and Streuber, Stephan and Meyer, Nathalie and Sandi, Carmen}, note={Article Number: 5904} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52590"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52590/3/Rodrigues_2-1ludymlcrmub28.pdf"/> <dc:creator>Sandi, Carmen</dc:creator> <dc:contributor>Rodrigues, João</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Meyer, Nathalie</dc:creator> <dc:contributor>Studer, Erik</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Sandi, Carmen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2020</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52590"/> <dc:contributor>Streuber, Stephan</dc:contributor> <dc:creator>Studer, Erik</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52590/3/Rodrigues_2-1ludymlcrmub28.pdf"/> <dcterms:abstract xml:lang="eng">Individuals differ in their physiological responsiveness to stressful challenges, and stress potentiates the development of many diseases. Heart rate variability (HRV), a measure of cardiac vagal break, is emerging as a strong index of physiological stress vulnerability. Thus, it is important to develop tools that identify predictive markers of individual differences in HRV responsiveness without exposing subjects to high stress. Here, using machine learning approaches, we show the strong predictive power of high-dimensional locomotor responses during novelty exploration to predict HRV responsiveness during stress exposure. Locomotor responses are collected in two ecologically valid virtual reality scenarios inspired by the animal literature and stress is elicited and measured in a third threatening virtual scenario. Our model's predictions generalize to other stressful challenges and outperforms other stress prediction instruments, such as anxiety questionnaires. Our study paves the way for the development of behavioral digital phenotyping tools for early detection of stress-vulnerable individuals.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:55:51Z</dcterms:available> <dc:creator>Streuber, Stephan</dc:creator> <dc:creator>Rodrigues, João</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:55:51Z</dc:date> <dcterms:title>Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges</dcterms:title> <dc:contributor>Meyer, Nathalie</dc:contributor> </rdf:Description> </rdf:RDF>