Publikation:

Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges

Lade...
Vorschaubild

Dateien

Rodrigues_2-1ludymlcrmub28.pdf
Rodrigues_2-1ludymlcrmub28.pdfGröße: 1.63 MBDownloads: 183

Datum

2020

Autor:innen

Rodrigues, João
Studer, Erik
Meyer, Nathalie
Sandi, Carmen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Communications. Nature Publishing Group. 2020, 11, 5904. eISSN 2041-1723. Available under: doi: 10.1038/s41467-020-19736-3

Zusammenfassung

Individuals differ in their physiological responsiveness to stressful challenges, and stress potentiates the development of many diseases. Heart rate variability (HRV), a measure of cardiac vagal break, is emerging as a strong index of physiological stress vulnerability. Thus, it is important to develop tools that identify predictive markers of individual differences in HRV responsiveness without exposing subjects to high stress. Here, using machine learning approaches, we show the strong predictive power of high-dimensional locomotor responses during novelty exploration to predict HRV responsiveness during stress exposure. Locomotor responses are collected in two ecologically valid virtual reality scenarios inspired by the animal literature and stress is elicited and measured in a third threatening virtual scenario. Our model's predictions generalize to other stressful challenges and outperforms other stress prediction instruments, such as anxiety questionnaires. Our study paves the way for the development of behavioral digital phenotyping tools for early detection of stress-vulnerable individuals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RODRIGUES, João, Erik STUDER, Stephan STREUBER, Nathalie MEYER, Carmen SANDI, 2020. Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges. In: Nature Communications. Nature Publishing Group. 2020, 11, 5904. eISSN 2041-1723. Available under: doi: 10.1038/s41467-020-19736-3
BibTex
@article{Rodrigues2020Locom-52590,
  year={2020},
  doi={10.1038/s41467-020-19736-3},
  title={Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges},
  volume={11},
  journal={Nature Communications},
  author={Rodrigues, João and Studer, Erik and Streuber, Stephan and Meyer, Nathalie and Sandi, Carmen},
  note={Article Number: 5904}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52590">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52590/3/Rodrigues_2-1ludymlcrmub28.pdf"/>
    <dc:creator>Sandi, Carmen</dc:creator>
    <dc:contributor>Rodrigues, João</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Meyer, Nathalie</dc:creator>
    <dc:contributor>Studer, Erik</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Sandi, Carmen</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2020</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52590"/>
    <dc:contributor>Streuber, Stephan</dc:contributor>
    <dc:creator>Studer, Erik</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52590/3/Rodrigues_2-1ludymlcrmub28.pdf"/>
    <dcterms:abstract xml:lang="eng">Individuals differ in their physiological responsiveness to stressful challenges, and stress potentiates the development of many diseases. Heart rate variability (HRV), a measure of cardiac vagal break, is emerging as a strong index of physiological stress vulnerability. Thus, it is important to develop tools that identify predictive markers of individual differences in HRV responsiveness without exposing subjects to high stress. Here, using machine learning approaches, we show the strong predictive power of high-dimensional locomotor responses during novelty exploration to predict HRV responsiveness during stress exposure. Locomotor responses are collected in two ecologically valid virtual reality scenarios inspired by the animal literature and stress is elicited and measured in a third threatening virtual scenario. Our model's predictions generalize to other stressful challenges and outperforms other stress prediction instruments, such as anxiety questionnaires. Our study paves the way for the development of behavioral digital phenotyping tools for early detection of stress-vulnerable individuals.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:55:51Z</dcterms:available>
    <dc:creator>Streuber, Stephan</dc:creator>
    <dc:creator>Rodrigues, João</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:55:51Z</dc:date>
    <dcterms:title>Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges</dcterms:title>
    <dc:contributor>Meyer, Nathalie</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen