On robust local polynomial estimation with long-memory errors
Lade...
Dateien
Datum
2000
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least squares regression is used. In this paper, local polynomial smoothing based on M
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, Yuanhua FENG, Sucharita GHOSH, Philipp SIBBERTSEN, 2000. On robust local polynomial estimation with long-memory errorsBibTex
@techreport{Beran2000robus-525, year={2000}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={On robust local polynomial estimation with long-memory errors}, number={2000/18}, author={Beran, Jan and Feng, Yuanhua and Ghosh, Sucharita and Sibbertsen, Philipp} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/525"> <dc:contributor>Sibbertsen, Philipp</dc:contributor> <dcterms:issued>2000</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:55Z</dcterms:available> <dc:creator>Feng, Yuanhua</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Ghosh, Sucharita</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Feng, Yuanhua</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Beran, Jan</dc:creator> <dcterms:abstract xml:lang="eng">Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least squares regression is used. In this paper, local polynomial smoothing based on M</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/525/1/dp00_18.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:55Z</dc:date> <dc:format>application/pdf</dc:format> <dcterms:title>On robust local polynomial estimation with long-memory errors</dcterms:title> <dc:creator>Sibbertsen, Philipp</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/525/1/dp00_18.pdf"/> <dc:creator>Ghosh, Sucharita</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/525"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Beran, Jan</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein