Widened Learning of Index Tracking Portfolios

Loading...
Thumbnail Image
Date
2019
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
18th IEEE International Conference On Machine Learning And Applications (ICMLA). - Piscataway : IEEE, 2019. - pp. 1800-1805. - ISBN 978-1-72814-551-8
Abstract
Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Dec 16, 2019 - Dec 19, 2019, Boca Raton, FL, USA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690GAVRIUSHINA, Iuliia, Oliver R. SAMPSON, Michael R. BERTHOLD, Winfried POHLMEIER, Christian BORGELT, 2019. Widened Learning of Index Tracking Portfolios. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Boca Raton, FL, USA, Dec 16, 2019 - Dec 19, 2019. In: 18th IEEE International Conference On Machine Learning And Applications (ICMLA). Piscataway:IEEE, pp. 1800-1805. ISBN 978-1-72814-551-8. Available under: doi: 10.1109/ICMLA.2019.00291
BibTex
@inproceedings{Gavriushina2019-12Widen-50111,
  year={2019},
  doi={10.1109/ICMLA.2019.00291},
  title={Widened Learning of Index Tracking Portfolios},
  isbn={978-1-72814-551-8},
  publisher={IEEE},
  address={Piscataway},
  booktitle={18th IEEE International Conference On Machine Learning And Applications (ICMLA)},
  pages={1800--1805},
  author={Gavriushina, Iuliia and Sampson, Oliver R. and Berthold, Michael R. and Pohlmeier, Winfried and Borgelt, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50111">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.</dcterms:abstract>
    <dcterms:issued>2019-12</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50111"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sampson, Oliver R.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Pohlmeier, Winfried</dc:creator>
    <dc:contributor>Gavriushina, Iuliia</dc:contributor>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:title>Widened Learning of Index Tracking Portfolios</dcterms:title>
    <dc:creator>Gavriushina, Iuliia</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:contributor>Sampson, Oliver R.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Pohlmeier, Winfried</dc:contributor>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50111/1/Gavriushina_2-1m0k5nmmycukv1.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-03T07:32:42Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed